

University of Colorado Boulder

Determination of the continuous beta function of SU(3) Yang-Mills theory

Curtis Peterson In collaboration with Anna Hasenfratz, Jake van Sickle and Oliver Witzel

Renormalization group (RG) beta function

• RG beta functions describe the dependence of renormalized couplings $g(\mu)$ on the energy scale μ of some physical process

$$etaig(g^2ig)\equiv\mu^2rac{\mathrm{d}}{\mathrm{d}\mu^2}g^2(\mu)$$

• Gradient flow (GF) defines a renormalized coupling that runs with $\mu^2 \propto (8t)^{-1}$

$$g^2_{
m GF}(t;L,g^2_0) = {128\pi^2\over 3(N^2-1)} {1\over 1+\delta(t/L^2)} \langle t^2 E(t)
angle$$

- By setting $\mu^2 \propto (cL)^{-1}$, one can define the discrete step-scaling beta function
 - > Permits only a single scale (set by L)
 - Consequently, step-scaling works well in the deconfined phase
- ✤ In the infinite-volume limit one can define a beta function that runs continuously with the GF flow time
 - \succ Explored by a number of groups throughout the years
 - Holland, K. et al.
 - Hasenfratz, A. and Witzel, O.
 - A number of talks at this conference

[Fodor, Z., Holland, K., Kuti, J. et al. *JHEP* 11 (2012) 007] **%**

[Fodor, Z., Holland, K., Kuti, J., Nogradi, C., Wong, K. H. *EPJ WoC* **175**, 08027 (2018)] **S**

[Hasenfratz, A., Witzel, O. *PoS*, LATTICE2019 (**2019**) 094]

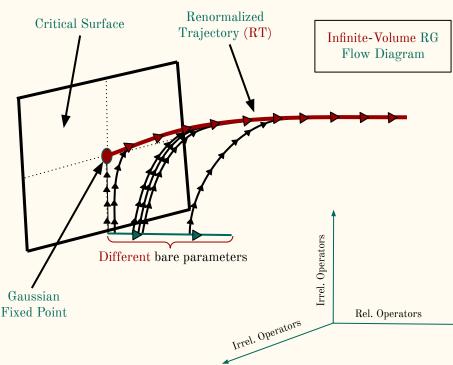
[Hasenfratz, A., Witzel, O. PRD **101**, 034514 (2019)] **S**

[Monahan, C., Wed. at 9:15 PM] 🗞

[Holland, K., after this talk] 🗞

[Kuti, J., Thurs. at 9:00 PM] 🗞

[Hasenfratz, A., Thurs. at 9:15 PM] \bigotimes



The continuous beta function method

✤ Gradient flow describes an RG transformation when combined with a rescaling step in the calculation of expectation values $\mu^{2} \propto (8t)^{-1}$

$$eta_{
m GF} \left(g_{
m GF}^2
ight) \equiv \mu^2 rac{{
m d}}{{
m d}\mu^2} g_{
m GF}^2(\mu) \stackrel{\frown}{=} -t rac{{
m d}}{{
m d}t} g_{
m GF}^2(t)$$
 $rac{g_{
m GF}^2(t)}{4\pi} \equiv lpha_{
m GF}(t)$

- First step in calculation is an extrapolation to the infinite-volume limit
 - > Allows for the presence of multiple scales
 - ➤ The RG trajectories of actions with different bare parameters overlap sufficiently close to the RT
- - > Equivalent to tuning $g_0^2(a)$ to zero at fixed dimensionful flow time t

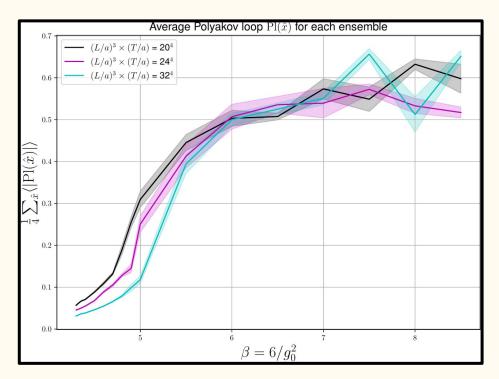
Gradient flow beta function for SU(3) pure gauge Yang-Mills theory

- We aim to demonstrate that the continuous beta function method can be applied in the confined phase
- $\label{eq:second} \bullet \qquad \mbox{We focus on the } SU(3) \mbox{ pure gauge Yang-Mills system}$
 - > No complications arise from introducing fermions
- ✤ Most recent study of the RG beta function from GF for SU(3) Yang-Mills uses step-scaling
 - \succ Goes out to $\alpha_{\rm GF}$ ∼ 1

[Dalla Brida, M., Ramos, A. EPJC 79, 720 (2019)] 🗞

The gradient flow coupling at high-energy and the scale of SU(3) Yang–Mills theory

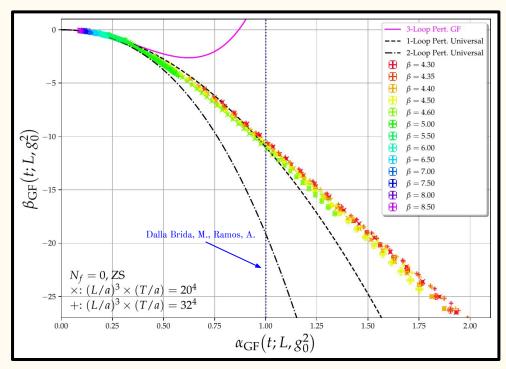
Mattia Dalla Brida^{1,a}, Alberto Ramos^{2,b}


¹ Dipartimento di Fisica, Università di Milano-Bicocca and INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
² School of Mathematics and Hamilton Mathematics Institute, Trinity College Dublin, Dublin 2, Ireland

Simulation and Analysis

[Ramos, A., Sint, S. EPJC 76, 720 (2019)] S

- Simulations are performed with a pure gauge Symanzik * action using GRID 🗞
 - Bare gauge couplings in the range $4.3 \le \beta \le 8.5$ Volumes used $(L/a)^3 \times (T/a) = 20^4$, 24^4 and 32^4 \succ
 - \succ
 - Ensembles generated using hybrid Monte Carlo \succ
- * Gradient flow performed with Wilson flow and Zeuthen flow using QLUA 🗞
 - Flow (F) and operator (O) combinations to be \succ abbreviated
 - ZS (Zeuthen flow + Symanzik operator) fully \succ $\mathcal{O}(a^2)$ improved

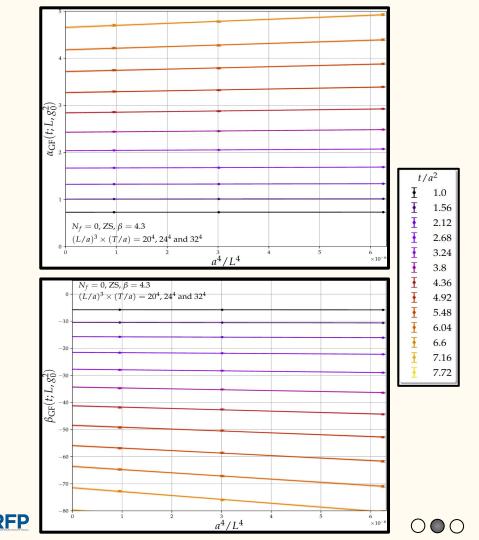

Step 0: Looking at the raw data

[Dalla Brida, M., Ramos, A. EPJC 79, 720 (2019)] 🗞

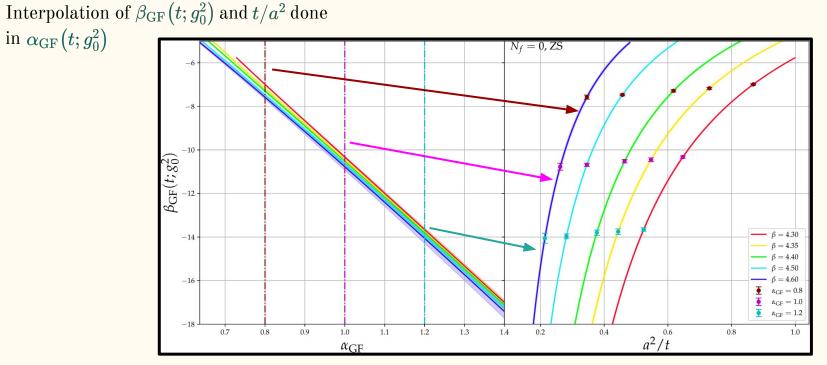
[Harlander, R., Neumann, T. JHEP 06 (2016) 161] 🗞

 $\bigcirc \bigcirc \bigcirc \bigcirc$

- The raw data exhibits a number of attractive features
 - Considerable overlap between different bare gauge couplings
 - \succ Small finite-volume effects
 - Overlap with perturbation theory at weak coupling



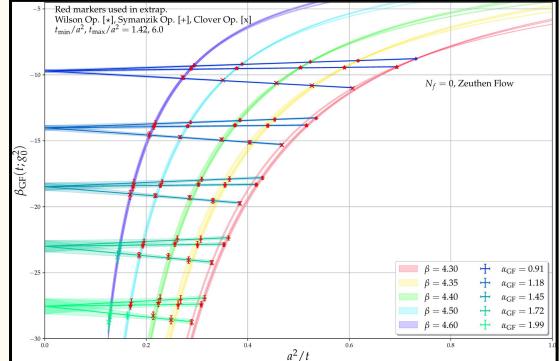
Step 1: Infinite-volume extrapolation


- Extrapolation done at fixed t/a^2 and bare gauge coupling for each operator
- Extrapolating function is linear in a^4/L^4
 - > Motivated by scaling with L/a in deconfined phase
 - > Investigations of other possible scalings with L/a are underway

[Hasenfratz, A., Witzel, O., *PRD* **101**, 034514 (2019)] **%**

Step 2: Continuum extrapolation of $\beta_{\mathrm{GF}}\left(t;g_{0}^{2}
ight)$

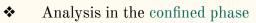
 $\begin{array}{ll} \bigstar & \text{ Continuum limit taken by fixing } \alpha_{\mathrm{GF}} \, \mathrm{and} \\ & \text{ extrapolating } \beta_{\mathrm{GF}} \big(t; g_0^2 \big) \, \mathrm{to} \, a^2/t \to 0 \end{array}$

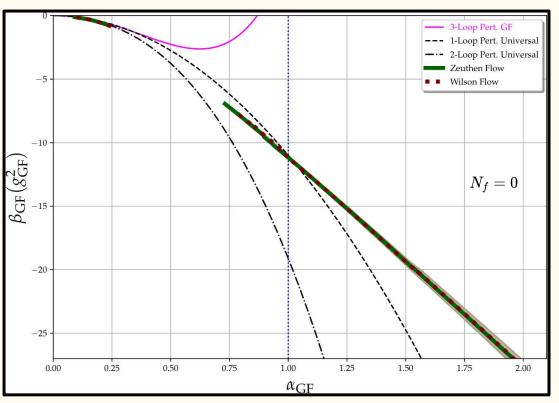


*

Step 2: Continuum extrapolation of $\beta_{\mathrm{GF}}\left(t;g_{0}^{2} ight)$

- ✤ We do a simultaneous fit using three operators
 - > Extrapolating function is linear in a^2/t
 - Correlations between operators accounted for using SVD cuts
 - Investigations of better ways to deal with the correlations are ongoing

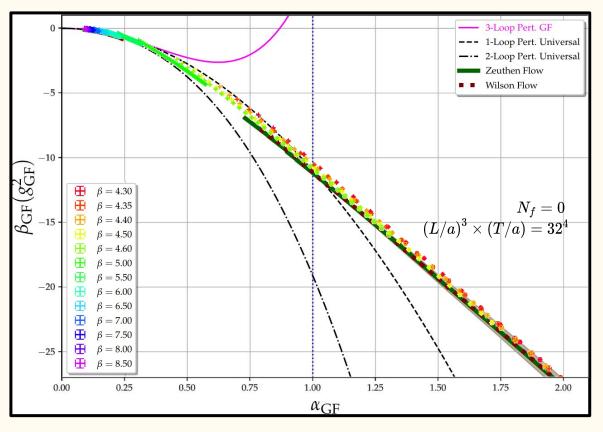



Final Results and Conclusions

[Dalla Brida, M., Ramos, A. EPJC 79, 720 (2019)] 🗞

[Harlander, R., Neumann, T. JHEP 06 (2016) 161] 🗞

- Agreement within error between Zeuthen flow and Wilson flow
- **♦** Analysis in the deconfined phase
 - Requires an extra interpolation between bare gauge couplings
 - ➤ Matches perturbation theory
 - Agreement within error between Zeuthen flow and Wilson flow
- ✤ Analysis in the deconfinement transition
 - > Requires a more careful investigation of scaling with L/a
 - \succ Missing from this iteration of the analysis

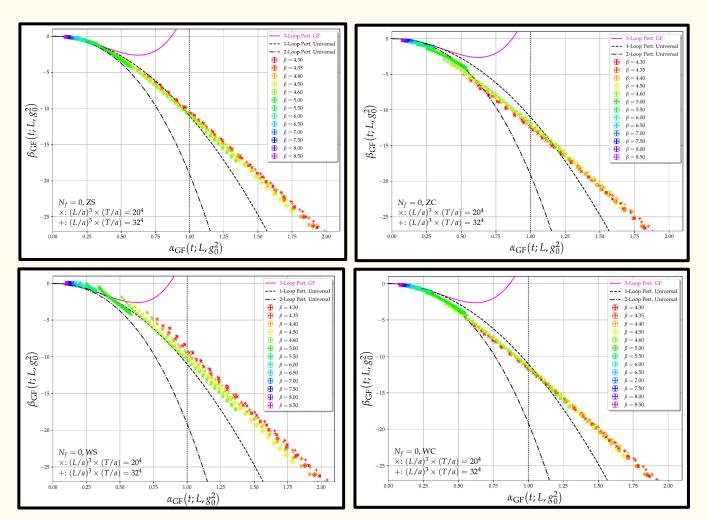


Final Results and Conclusions

[Dalla Brida, M., Ramos, A. EPJC 79, 720 (2019)] 🗞

[Harlander, R., Neumann, T. JHEP 06 (2016) 161] 🗞

Acknowledgements

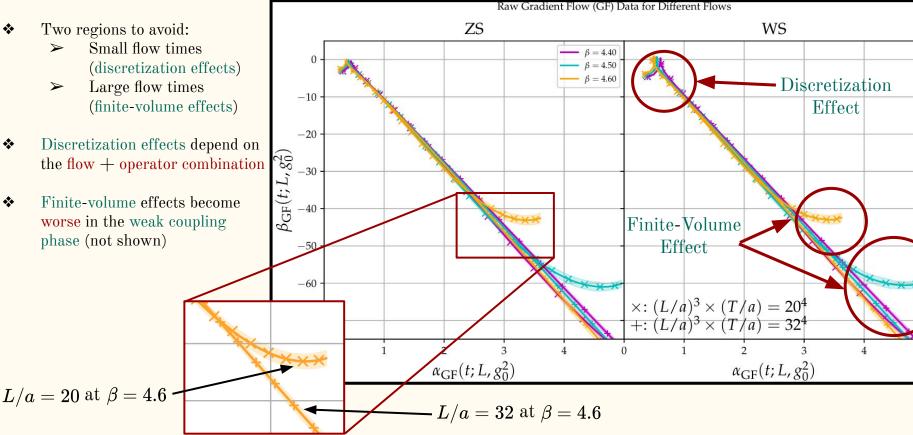

U. Colorado: RMACC Summit

USQCD: BNL SDCC

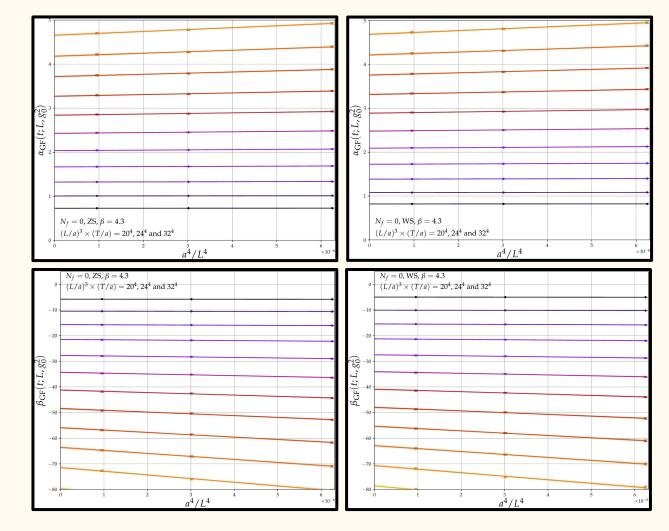
NSF GRFP

Supplemental Slides

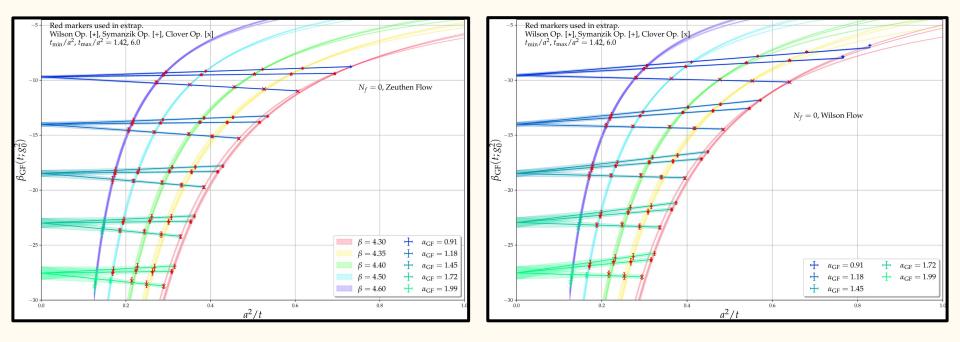
Raw data with different flow+operator combinations

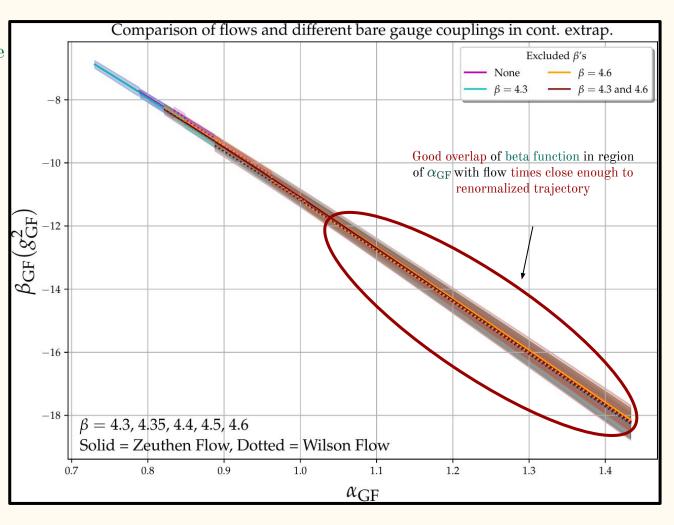

[Dalla Brida, M., Ramos, A. *EPJC* **79**, 720 (2019)] **%**

[Harlander, R., Neumann, T. *JHEP* 06 (2016) 161] **%**


Various effects that appear in raw data

* Two regions to avoid: \succ Small flow times


- Large flow times \succ (finite-volume effects)
- * Discretization effects depend on the flow + operator combination
- * **Finite-volume effects become** worse in the weak coupling phase (not shown)


Infinite-volume extrapolation for Symanzik operator with different flows

Continuum extrapolation for different flows

Final results for different flows and different ranges of bare gauge couplings

