

D→P Semileptonic Decays with Highly Improved Staggered Quarks

William I. Jay (Fermilab) for FNAL Lattice & MILC Collaborations Lattice 2021 — 29 July 2021

Outline

- Scope of the talk
- The gauge ensembles
- Setup of calculation
- Preliminary results
- Summary and next steps

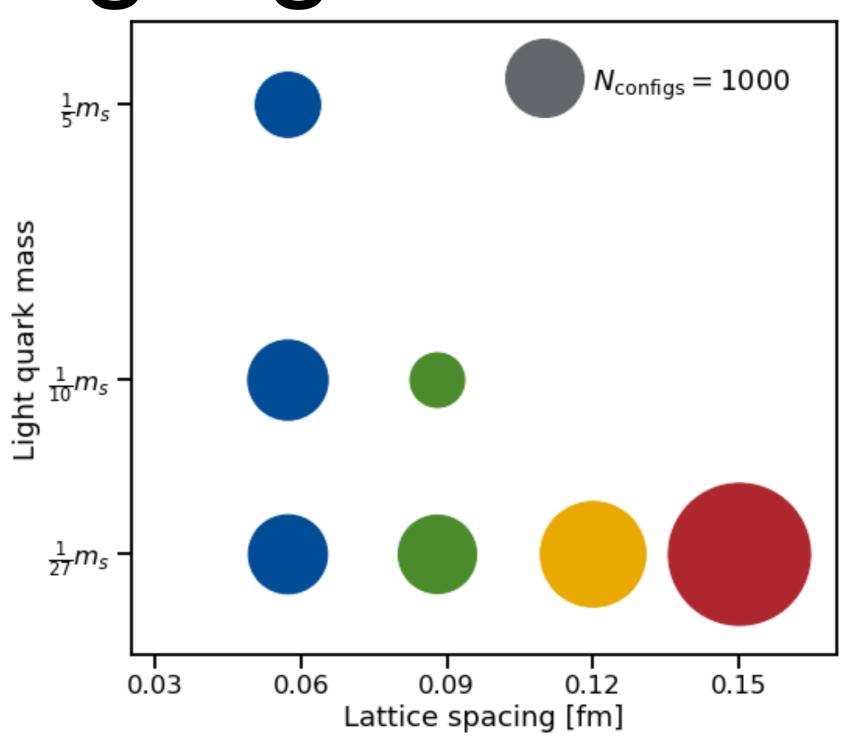
Special thanks to my colleagues in the all-HISQ subgroup:

Carleton DeTar, Aida El-Khadra, Elvira Gámiz, Zech Gelzer, Steve Gottlieb, Andreas Kronfeld, Andrew Lytle, Jim Simone

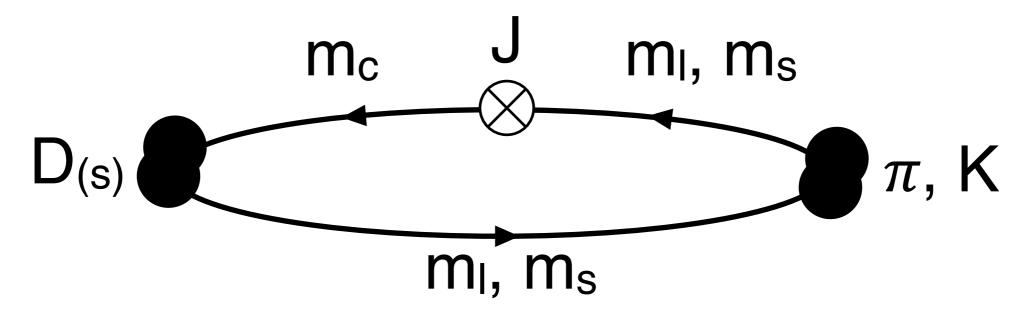
Scope: the all-HISQ campaign

- HISQ ensembles with $N_f = (2+1+1)$ dynamical sea quarks generated by the MILC collaboration
- Valence quarks:
 - Light and strange quarks match the sea
 - Heavy quarks: range from 0.9 m_c up to cutoff (ma~1)
- Campaign Goal: form factors for decays of B, D mesons to pseudoscalars
 - ▶ D mesons: $D_{(s)} \rightarrow \pi$, K
 - ▶ B mesons: $B_{(s)} \rightarrow D_{(s)}$, π , K
- Eventual target: lattice spacings from 0.15 fm—0.03 fm
- This talk: preliminary results for
 - ▶ 4 lattice spacings: 0.15, 0.12, 0.09, 0.06 fm
 - Decays of D mesons only
- For B decays: see Andrew Lytle's talk in this session
- All 3pt functions are fully blinded

The gauge ensembles



3pt correlators



- We compute scalar, vector, and tensor currents
- Kinematic setup:
 - Work in rest frame of mother hadron D_(s)
 - Vary the energy of the recoiling daughter hadron π , K

の書き光ーの書き光ー

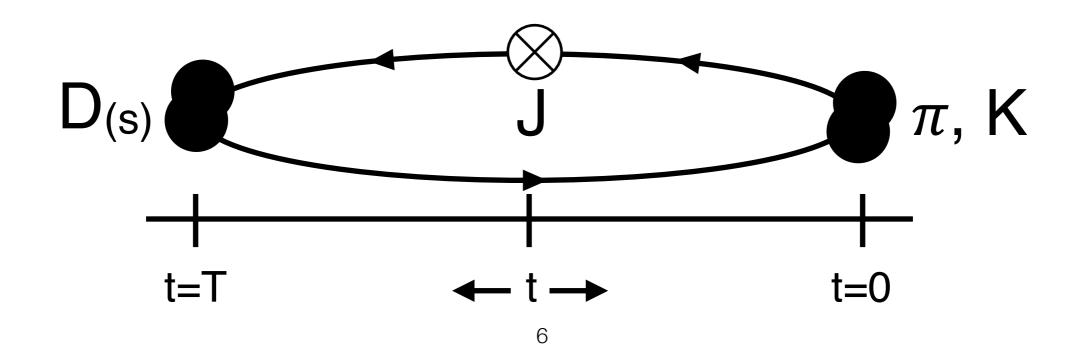
3pt correlators

As usual, the spectral decomposition reads:

$$C_{3}(t;T) = \langle \mathcal{O}_{D}(T)J(t)\mathcal{O}_{\pi}(0)\rangle$$

$$\sim \langle 0|\mathcal{O}_{D}|D\rangle \langle D|J|\pi\rangle \langle \pi|\mathcal{O}_{\pi}|0\rangle e^{-m_{D}(T-t)}e^{-m_{\pi}t}$$

(bare) transition matrix element ~ desired form factor



の言語十一〇章書

Form factors from 2pt + 3pt

Recall the ratio R(T, t)

$$R(T,t) = (\text{factors}) \times \frac{C_3(T,t)}{\sqrt{C_2^L(t)C_2^H(T-t)}} e^{+E_L t/2} e^{+E_H(T-t)/2}$$

$$\stackrel{1 \leq t \leq T}{\longrightarrow} f_J$$

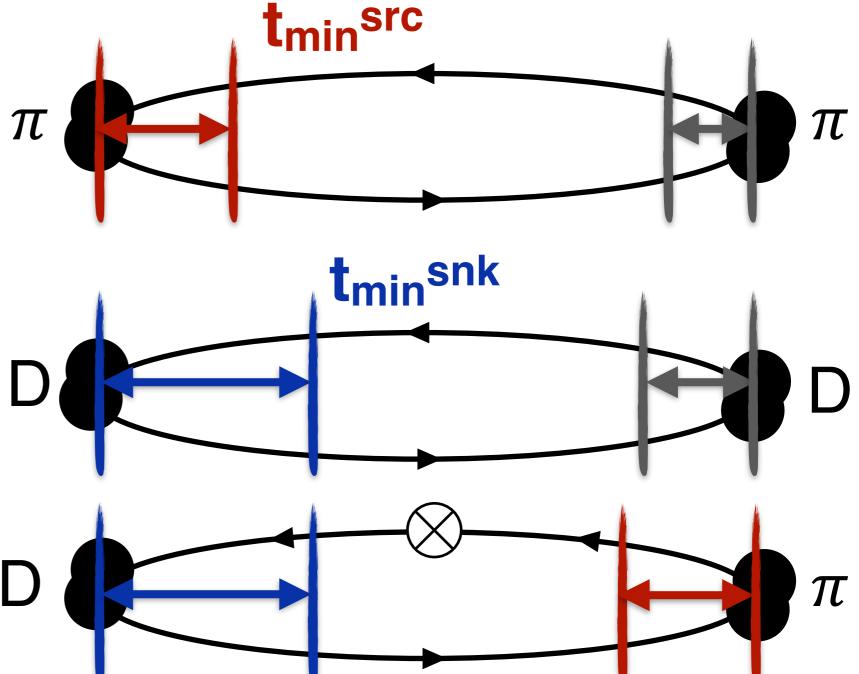
- The ratio asymptotically approaches the form factors
- Our analysis of 2pt and 3pt functions fits the full spectral decomposition
- The ratio gives a valuable visual check on fit results

の言語書号の言語書

2pt + 3pt

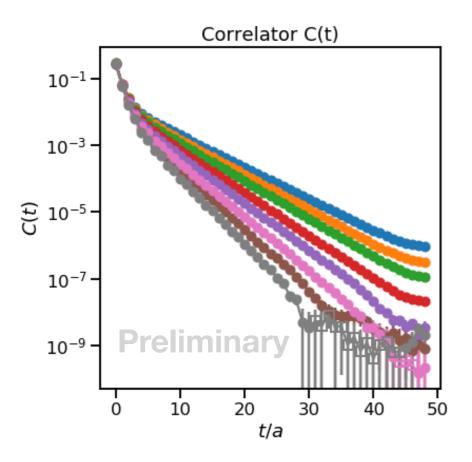
- π: (n+n_o) states
- D: (m+m_o) states
- Fix distances

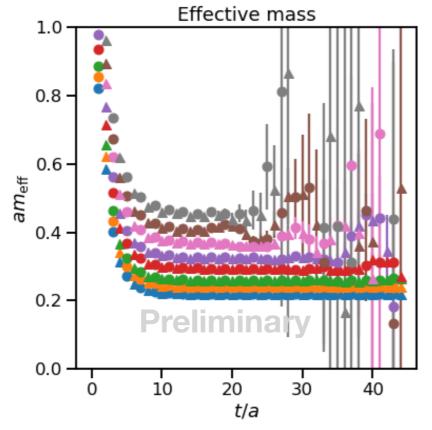
tmin^{src} and tmin^{snk}
for all correlators
in physical units

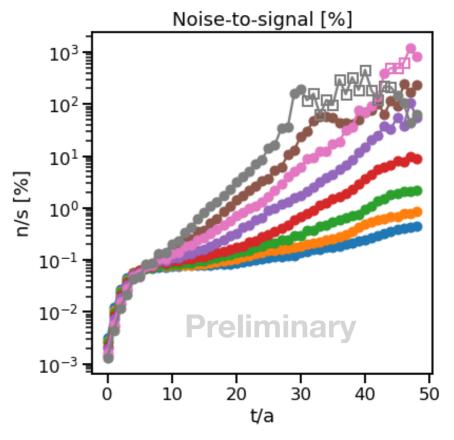


Preliminary results

- Consider kaon 2pt functions at a=0.09 fm
- Fit each 2pt function
- Find appropriate values for t_{min} and number of states

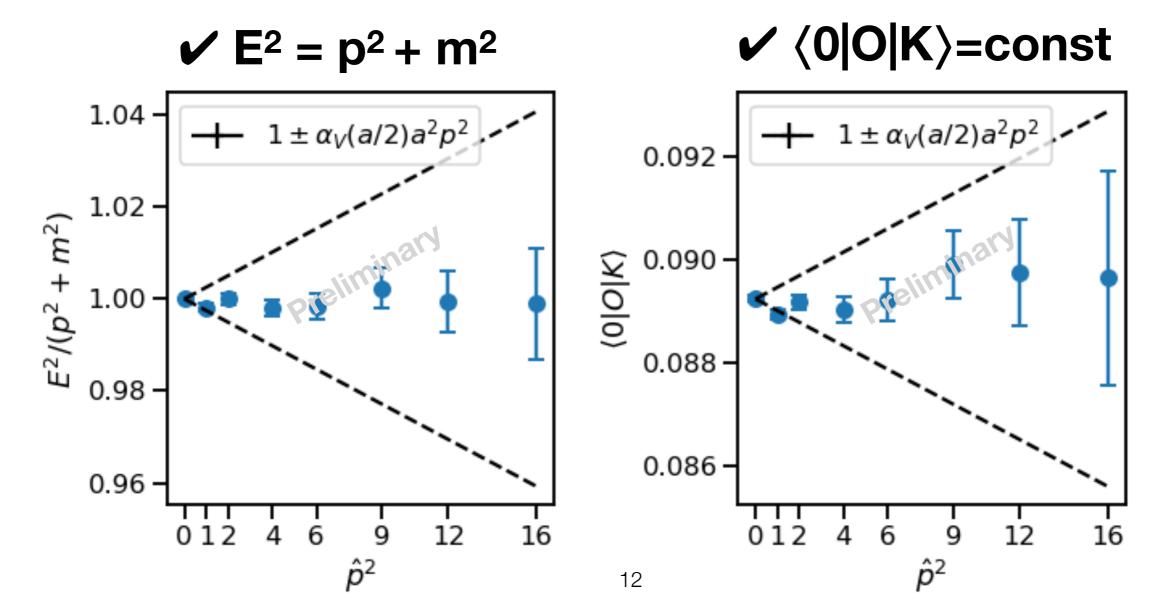






- Consider kaon 2pt functions at a=0.09 fm
- Fit each 2pt function
- Find appropriate values for t_{min} and number of states
- Check relativistic dispersion relation

- Consider kaon 2pt functions at a=0.09 fm
- Check relativistic dispersion relation

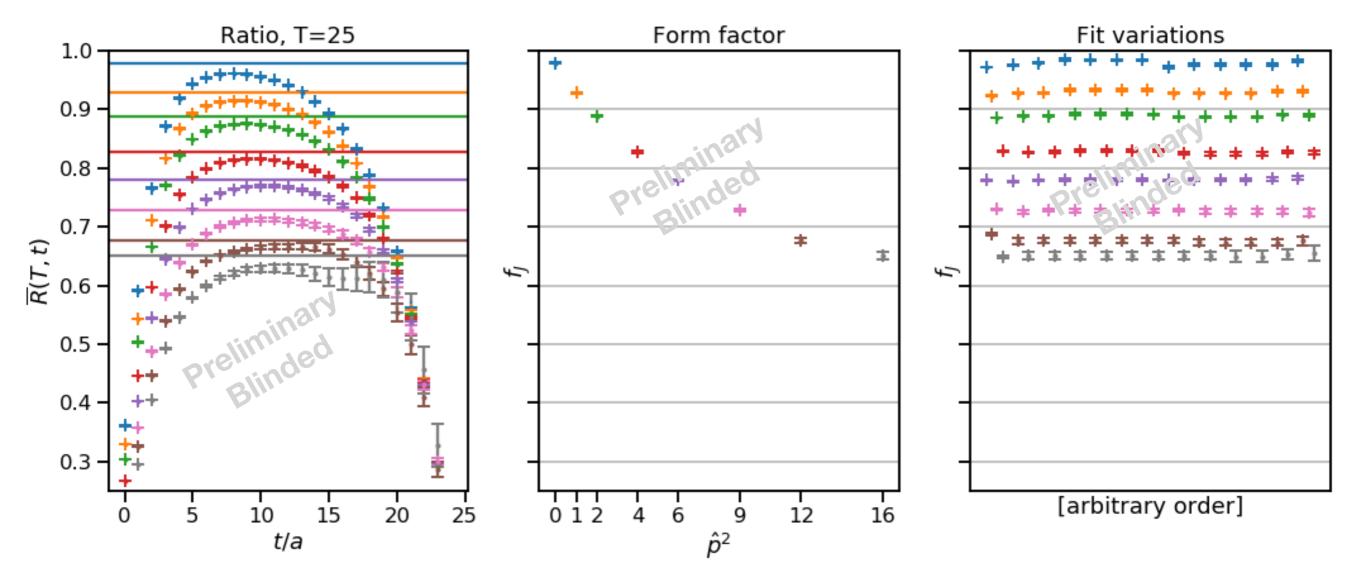


- Consider kaon 2pt functions at a=0.09 fm
- Check relativistic dispersion relation
- Use knowledge from 2pt functions as inputs for 3pt fits
 - ► Fix t_{min} in physical units
 - ▶ Fix number of states (n+n₀) and (m+m₀)
 - ▶ Impose knowledge $E^2/(\mathbf{p}^2+m^2)=1+\mathcal{O}(\alpha_s(ap)^2)$
 - Verify results visually for sanity

の言語出書の言語出

Form factor fits

- D_s → K, physical masses, a=0.09 fm
- Joint fit with two 2pt functions and five 3pt functions
 Scalar form factor f₀, D_s→K



Form factor fits

- D_s → K, physical masses, a=0.09 fm
- Joint fit with two 2pt functions and five 3pt functions
- Results are qualitatively very similar for
 - ▶ Different currents (Vi, V4, and Tij)
 - ▶ Different masses (i.e., D→K and D→ π)
 - Different lattice spacings
- Note: 3pt results are fully blinded

の言語計=第〇章語計=

Renormalization

- PCVC: $\nabla_{\mu}V^{\mu} = (m_1 m_2)S$
- This Ward Identity guarantees absolute normalization for the scalar form factor: $Z_S \equiv 1$.
- Z-factors are still needed for the local, one-link vector currents.
- PCVC defines the Z-factors non-perturbatively

$$(M_D - M_{\pi})\langle D|V_{\text{lat}}^4|\pi\rangle Z_{V^4} + \mathbf{q} \cdot \langle D|\mathbf{V}_{\text{lat}}|\pi\rangle Z_{V^i}$$
$$= (m_1 - m_2)\langle D|S_{\text{lat}}|\pi\rangle$$

の言語計=第の言語計=

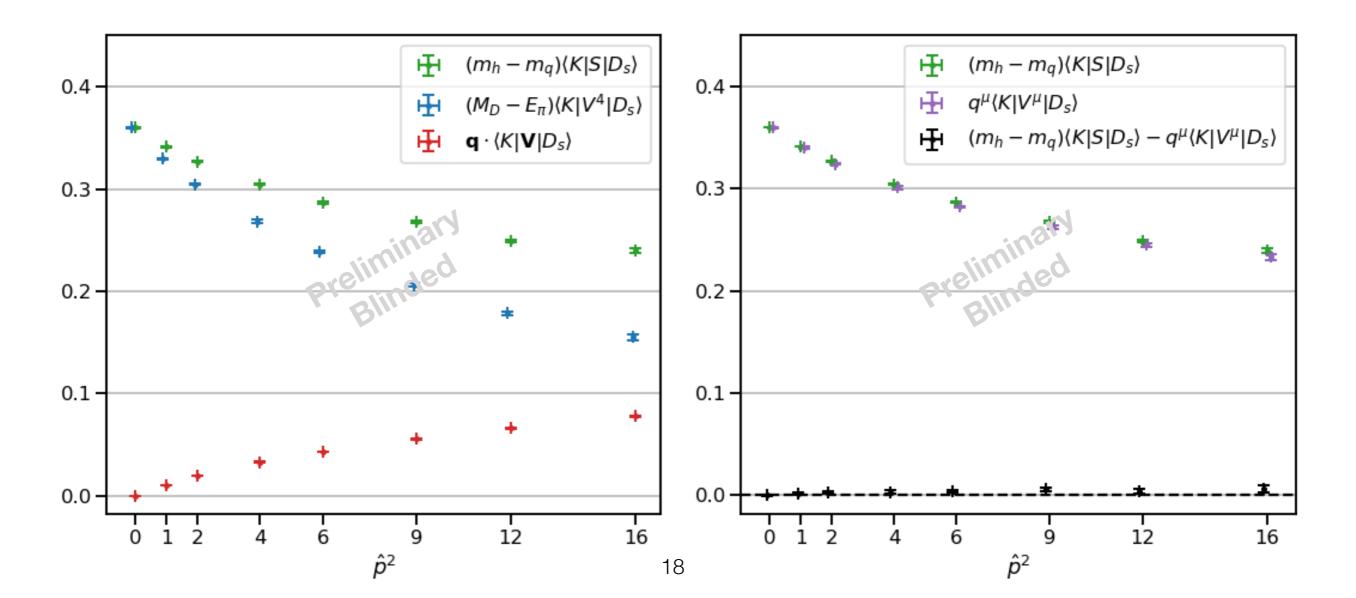
Renormalization

- PCVC: $\nabla_{\mu}V^{\mu} = (m_1 m_2)S$
- This Ward Identity guarantees absolute normalization for the scalar form factor: $Z_S = 1$.
- Z-factors are still needed for the local, one-link vector currents.
- PCVC defines the Z-factors non-perturbatively
- Expect: Z_{Vi} , $Z_{V4} \rightarrow 1$ as a $\rightarrow 0$

Renormalization

• $(m_h-m_q)\langle KISID_s\rangle = (M_{Ds}-E_K)\langle KIV^4ID_s\rangle + \mathbf{q}\cdot\langle KIVID_s\rangle$

= $q^{\mu}\langle KIV^{\mu}ID_{s}\rangle$



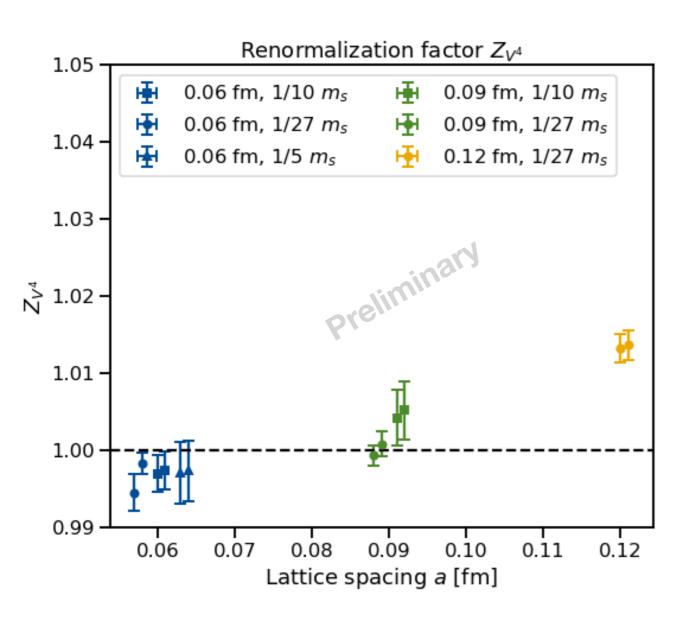
の言語書号の言語書

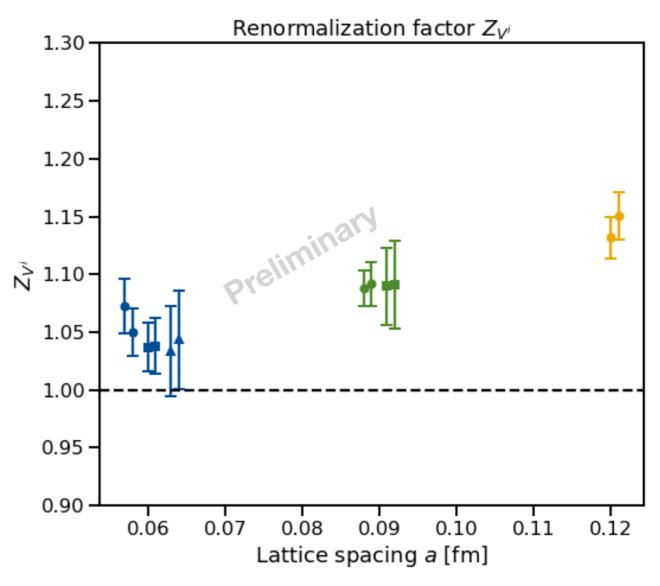
Renormalization

- $(m_h-m_q)\langle KISID_s\rangle = (M_{Ds} E_K)\langle KIV^4ID_s\rangle + \mathbf{q}\cdot\langle KIVID_s\rangle$ = $\mathbf{q}^\mu\langle KIV^\mu ID_s\rangle$
- At least visually, the bare matrix elements already satisfy the Ward Identity well (even for rather large momenta)
- Many options exist to extract values for Z_{V4} and Z_{Vi}
- One possible solution: extract them from a fit

Renormalization

- Fit PCVC relation with Z_{V4}, Z_{Vi} as parameters:
- $(m_h-m_q)\langle KISID_s\rangle = Z_{V4} (M_{Ds} E_K)\langle KIV^4ID_s\rangle + Z_{Vi} \mathbf{q} \cdot \langle KIVID_s\rangle$





の言語計=第〇言語計=

Renormalized form factors

 Armed with Z-factors, we can construct form factors relevant for phenomenology. For example:

$$f_{+}(q^{2}) = \left[f_{\parallel}(q^{2}) + (M_{H} - E_{L})f_{\perp}(q^{2})\right]$$

$$f_{0}(q^{2}) = \frac{\sqrt{2M_{H}}}{M_{H}^{2} - M_{L}^{2}} \left[(M_{H} - E_{L})f_{\parallel}(q^{2}) - (E_{L}^{2} - M_{H}^{2})f_{\perp}(q^{2}) \right]$$

Equivalent forms offer consistency checks

$$f_0(q^2) = \left(\frac{m_h - m_\ell}{M_H^2 - M_I^2}\right) \langle L|S|H\rangle$$
 $f_+(q^2) \propto "f_0 + f_\perp"$

の言語計=第〇言語計=

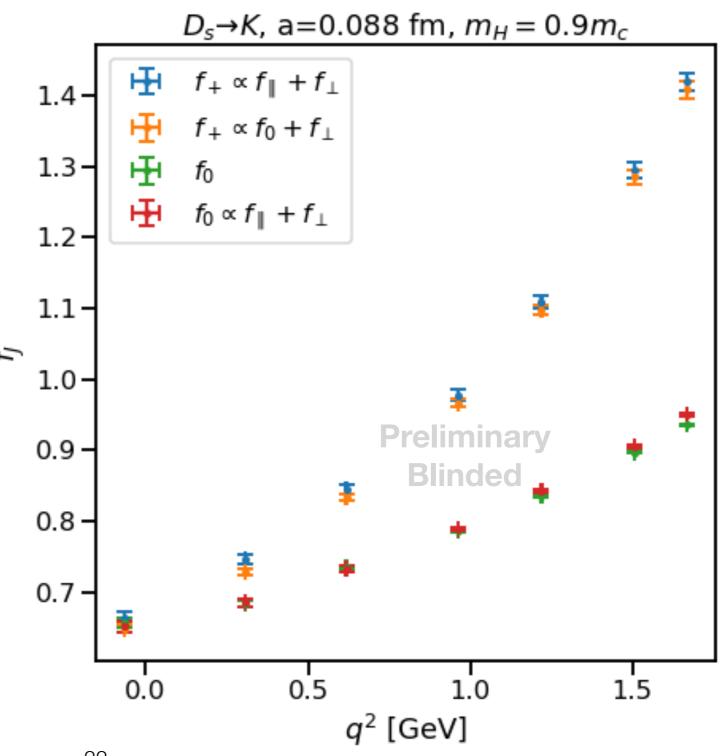
Renormalized form factors

Standard f+ via "f| + f_"

Alternate f_+ via " $f_0 + f_\perp$ "

f₀ via scalar matrix element

Standard f_0 via " $f_{\parallel} + f_{\perp}$ "



の言語計=第〇詩語計=

Renormalized form factors

Standard f+ via "f| + f_"

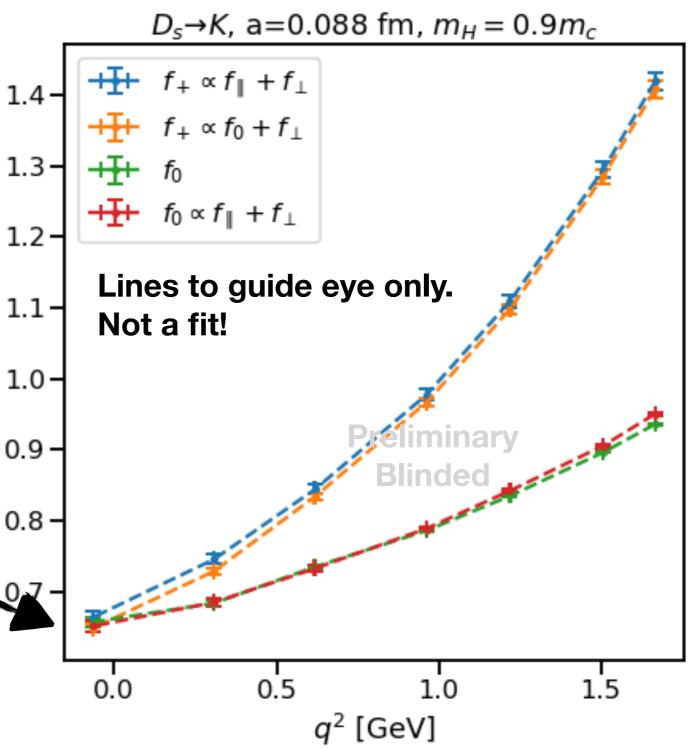
Alternate f+ via "f0 + f_"

f₀ via scalar matrix element

Standard f₀ via "f_{||} + f_{||}"

Check kinematic identity:

$$f_+(q^2) = f_0(q^2)$$
 at $q^2=0$



- We have presented preliminary results for $D_{(s)} \rightarrow \pi/K$
 - Matrix elements for S, V4, and V currents and range of momenta spanning full kinematic range
 - Non-perturbative renormalization via PCVC
 - Fully blinded results pass a variety of sanity checks
- In progress: chiral interpolation and continuum extrapolation

Backup slides

Three-point correlators

 We compute 40 current-momentum combinations for each mass triplet (m_{mother}, m_{daughter}, m_{spectator})

		S	V	1	Vi			Ţij	
momentum	\hat{p}^2	f_0	$ f_{\parallel} $	$f_{\perp}(1)$	$f_{\perp}(2)$	$f_{\perp}(3)$	$f_T(14)$	$f_T(24)$	$f_T(14)$
p000	0	1	1	X	X	X	X	X	X
p100	1	1	1	1	X	X	1	X	X
p110	2	1	1	1	1	X	1	✓	X
p200	4	1	1	1	X	X	1	X	X
p211	6	1	1	1	1	1	1	✓	✓
p300	9	1	1	1	X	X	1	X	X
p222	12	1	1	1	1	1	1	1	✓
p400	16	1	1	1	X	X	1	X	X

Tab. 4: Details about the correlation functions appearing the allHISQ campaign.