2021 Update on ε_K with lattice QCD inputs

(LANL-SWME Collaboration)

Weonjong Lee^{†*1}, Yong-Chull Jang², Jeehun Kim¹, Sunkyu Lee¹, Jaehoon Leem³, and Sungwoo Park⁴

Input Parameters

• Here we present input parameters in Tables 1, 2, and 3

 Table 1: Input parameters

Input	Value	Ref.
$ arepsilon_K _{ ext{exp}}$	$2.228(11) \times 10^{-3}$	PDG 2019
η_{cc}	1.72(27)	Bailey PRD92
η_{tt}	0.5765(65)	Buras PRD78
η_{ct}	0.496(47)	Brod PRD82
G_F	$1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$	PDG 2019
M_W	80.379(12) GeV	PDG 2019
$m_c(m_c)$	1.275(5) GeV	FLAG 19
$m_t(m_t)$	163.08(38)(17) GeV	PDG $2019 + SWME$
θ	$43.52(5)^{\circ}$	PDG 2019
m_{K^0}	497.611(13) MeV	PDG 2019
ΔM_K	$3.484(6) \times 10^{-12} \text{ MeV}$	PDG 2019
F_K	155.7(3) MeV	FLAG 2019
λ	0.2243(5)	PDG 2019
$\bar{ ho}$	0.146(22)	UTFIT 2017
$ar\eta$	0.333(16)	UTFIT 2017

Figure 2: $|\varepsilon_K|$ with ex. $|V_{cb}|$ (CLN) Figure 3: $|\varepsilon_K|$ with ex. $|V_{cb}|$ (BGL) • In Fig. 2, we present results for $|\varepsilon_K|$ obtained using lattice QCD inputs with exclusive $|V_{cb}|$ of HFLAV 2021 (CLN).

• In Fig. 3, we present results for $|\varepsilon_K|$ obtained using lattice QCD inputs with exclusive $|V_{cb}|$ of FNAL-MILC 2021 (BGL).

Table 2: Input parameter ξ_0

Input	Value	Ref.
$\xi_0(\text{indirect})$	$-1.738(177) \times 10^{-4}$	$SWME + RBC-UK \ 2020$
$\xi_0(\text{direct})$	$-2.102(472) \times 10^{-4}$	SWME + RBC-UK 2020

Table 3: Input parameters $ V_{cb} $					
channel	method	value	Ref.		
Exclusive	$ ext{CLN}(+lpha)$	39.25(56)	HFLAV 2021		
Exclusive	BGL	38.57(78)	FNAL/MILC 202		
Inclusive	1S scheme	41.98(45)	HFLAV 2021		

- $\Delta \varepsilon_K = |\varepsilon_K^{\rm SM}| |\varepsilon_K^{\rm Exp}|$
- $\Delta \varepsilon_K$ represents a gap in ε_K between the SM theory and the experiment.

Table 4: $|\varepsilon_K|$ and $\Delta \varepsilon_K$

Method	$ \varepsilon_K $ (in unit of 10^{-3})	$\Delta \varepsilon_K$
Exclusive $ V_{cb} (\text{CLN})$	1.569 ± 0.153	4.3σ
Exclusive $ V_{cb} (BGL)$	1.472 ± 0.165	4.6σ
Inclusive $ V_{cb} (1S)$	2.012 ± 0.176	1.2σ
Experiment	2.228 ± 0.011	0
		0

ε_K history

Figure 1: Exclusive $|V_{cb}|$ between CLN and BGL

- In Fig. 1, we present time evolution of exclusive $|V_{cb}|$ obtained using both CLN and BGL parametrization methods.
- It turns out that results for CNL and BGL are consistent with each other.

Master formula for ε_K

• The master formula for ε_K is given in SWME 2016, 2018 (PRD98).

$$\varepsilon_{K} = \exp(i\theta) \sqrt{2} \sin(\theta) \left(C_{\varepsilon} X_{\text{SD}} \hat{B}_{K} + \frac{\xi_{0}}{\sqrt{2}} + \xi_{\text{LD}} \right) + \mathcal{O}(\omega\varepsilon') + \mathcal{O}(\xi_{0}\Gamma_{2}/\Gamma_{1})$$

$$X_{\text{SD}} = \text{Im} \lambda_{t} \left[\text{Re} \lambda_{c} \eta_{cc} S_{0}(x_{c}) - \text{Re} \lambda_{t} \eta_{tt} S_{0}(x_{t}) - (\text{Re} \lambda_{c} - \text{Re} \lambda_{t}) \eta_{ct} S_{0}(x_{c}, x_{t}) \right]$$

$$\lambda_{i} = V_{is}^{*} V_{id}, \qquad x_{i} = m_{i}^{2} / M_{W}^{2}, \qquad C_{\varepsilon} = \frac{G_{F}^{2} F_{K}^{2} m_{K} M_{W}^{2}}{6\sqrt{2} \pi^{2} \Delta M_{K}}$$

Figure 4: History of $\Delta \varepsilon_K$ with CLN **Figure 5:** History of $\Delta \varepsilon_K$ with BGL

- In Fig. 4, we present $\Delta \varepsilon_K$ as a function of time, which are obtained using lattice QCD inputs with exclusive $|V_{cb}|$ (HFLAV 2021, CLN).
- In Fig. 5, we present $\Delta \varepsilon_K$ as a function of time, which are obtained using lattice QCD inputs with exclusive $|V_{cb}|$ (FNAL-MILC 2021, BGL).

Summary & Outlook		
1. We find that		
$\Delta arepsilon_K^{ m excl} = 4.6 \sigma \sim 3.9 \sigma$	(Lattice QCD)	(1)
$\Delta \varepsilon_K^{\rm incl} = 1.2\sigma$	(HQE, QCD Sum Rules)	(2)
2. It is too early to conclude that there might	be something wrong with the SM.	

- 3. Let us wait for the next round reanalysis of the BELLE2 group on the entire data sets of the $\bar{B} \to D^* \ell \bar{\nu}$ decays, using both CLN and BGL.
- 4. Meanwhile, it would be very helpful to reduce the errors for $h_{A_1}(w=1), \bar{\eta}, \xi_0, \xi_2$, and ξ_{LD} in lattice QCD.

 $\frac{\xi_0}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0} = \text{Absorptive LD Effect} \approx -7\%$

 $\xi_{\rm LD} = \text{Dispersive LD Effect} \approx \pm 2\% \longrightarrow \text{systematic error}$

[†] speaker, * wlee@snu.ac.kr

¹ Dept. of Physics & Astronomy, SNU, Seoul 08826, South Korea,

- 2 Physics Department, Columbia University, NY 10027, USA,
- ³ School of Physics, KIAS, Seoul 02455, South Korea,

⁴ T-2, LANL, NM 87545, USA

5. Please stay tuned for the update.

Acknowledgements

We would like to express our sincere gratitude to S. Sharpe, R. Gupta, T. Bhattacharya, A. Vaquero, and G. Martinelli for helpful discussion. The research of W. Lee is supported by the Mid-Career Research Program (Grant No. NRF-2019R1A2C2085685) of the NRF grant funded by the Korean government (MOE). This work was supported by Seoul National University Research Grant in 2019. W. Lee would like to acknowledge the support from the KISTI supercomputing center through the strategic support program for the supercomputing application research [No. KSC-2016-C3-0072, KSC-2017-G2-0009, KSC-2017-G2-0014, KSC-2018-G2-0004, KSC-2018-CHA-0010, KSC-2018-CHA-0043].