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QCD coupling evaluated at the Electroweak scale is a crucial ingredient in Standard Model phenomenology
lattice determination of QCD coupling at Electroweak scale dominated by step-scaling calculation

lattice results dominate over non-lattice determinations

is there another possible scheme that can be competitive with step-scaling, for consistency check?
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gradient flow scheme, flow time t

step-scaling: RG scale set through lattice volume
g°(2L) — g*(L)

with fixed ratio of flow time to lattice size ¢ / L?

continuum limit L /a — 00

alternative: gradient flow scheme, in the infinite volume limit, at fixed ¢ / a,2

continuum extrapolation © / a’ — 0o isa separate stage

connects to Harlander et al 3-loop Gradient Flow beta-function

beta-function through derivative
dg?
t——
dt
Lattice 2021 K Holland




a2

infinite volume beta-function requires 2-stage t
procedure towards the continuum limit

A
infinite volume limit at fixed t

followed by extrapolation to continuum

g’ ® " a’
2 4 L2

goal: connect weak to strong coupling through non-perturbative
measurement of beta-function throughout

need additional information in strong coupling regime to express

ratio of scale change in physical units e.g. using hadronic mass
spectrum
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Set-up

apply new procedure to SU(3) gauge theory with Nf = 3 massless quarks
use experience from beta-function studies of BSM models Nf = 10 and 12

lattice action: staggered fermions with 4 levels of stout smearing rho = 0.12
tree-level improved Symanzik gauge action

anti-periodic boundary conditions in all directions

first test: explore weak renormalized coupling regime, is it possible to make contact with
perturbation theory

set of lattice ensembles with 5 bare couplings
hypercubic lattice volumes L4 with L /a = 24, 32, 40, 48, 64
25 ensembles in total

initial target: renormalized coupling in the range g2 ~1 =2

idea of derivative beta-function for gradient flow has previously been explored
by Fodor et al arXiv:1711.04833, and Hasenfratz et al arXiv:1910.06408
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N;=3fund 64* Symanzik flow and operator 3 N; =3 fund 64 Symanzik flow
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Monte Carlo ensembles range from over 20,000 trajectories on smallest volume (L = 24) to
2,000 trajectories on largest volume (L = 64)

all ensembles are in the topological charge sector Q = 0, no tunneling to other sectors at
weak coupling
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the gradient flow renormalized coupling is measured at equally spaced intervals in flow time

gz(e),gz(Qe), ...,g2(ne)7

da?
use 5-point stencil to approximate derivative t_jt

to order (’)(64) at target t value

with € = .05 this is sufficiently accurate

(also compared with 3-point and 7-point stencils)

have both Symanzik (S) and Wilson (W) discretizations of the gradient flow
have both Symanzik (S) and Clover (C) discretizations of the observable <t2E >

sometimes use shorthand notation e.g. SSC or SSS

(gradient flow—MC action—observable, with MC action always Symanzik)
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N; =3 fund infinitesimal L=64 t=2 N; =3 fund infinitesimal L=64 t=5
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5 ensembles for each lattice volume give a range of renormalized couplings and
derivative at each chosen t value B—fn =t—

stage 1: pick a target value for the renormalized coupling e.g. g2 =2

on each volume and for each t value, interpolate beta-function in g2 to target point

this replaces the tuning step, which is often used in step-scaling studies
figures above are for Symanzik flow and Symanzik observable
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N;=3fund g2=2 finite-volume t=2
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stage 2: extrapolation to infinite volume at fixed t and at fixed renormalized coupling

volume-dependence is completely consistent with 114

volume variation naturally larger at larger fixed t value

L = 64 volume practically at infinite-volume limit, even at larger t values

choice of t range: avoid too small t (cutoff effects) and too large t (volume dependence)
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correlation matrix g2 = 2.0, t; =2, L from 24 to 64
11 T T T T T T T

09 [ )

R(t‘] 1t2)
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t2 = t1
infinite-volume results are strongly correlated across t values, being measured on same ensembles

continuum extrapolation includes this correlation, to produce likely chi-squared and efficient error
estimation
>=5-R-§
'O =Y -X-0)!'S 1Y — X -b)
b= (XS ' X)L . Xtyly

Y: data X: fitting function b: fit parameters
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N; =3 fund g2 =2 infinite-volume Symanzik flow and operator
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a2/t
stage 3: continuum extrapolation of infinite-volume results at fixed renormalized coupling

including the correlation in chi-squared gives a more efficient estimate of the continuum
error and a more natural chi-squared value

range of t-values chosen such that large cutoff effects at too small t excluded, and
volume effects at larger t under control
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fixed ratio flow time to lattice size

Q

alternate procedure: S

combine volume and continuum extrapolations
into one step

slope in plane corresponds to choice of fixed ratio of
flow time to lattice size

, 8t

C T2

» O > a?
at sufficiently small values of ¢, the remnant
finite-volume dependence should be very small L2

will show example at ¢ = 0.1, which corresponds on largest volume L =64 tot =5.12

— matches with the t-range in the previous method

use the same set of lattice ensembles
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N;=3fund g2=2 SSS tree improved c =0.1
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consistent results with different discretization of observable
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: Symanzik (S) and Clover (C)

tree-level improvement of the renormalized coupling through finite-lattice sums
Fodor et al arXiv:1406.0827

3(N2—1)
2 9 2
(t°E(t)) =g 582 C(a*/t,vV8t/L) (6.2)
128722 64m2t2 Lja"1
2 _ oy 0 —t(SF+G) (g ~1,-t(87+G) ce
C(a®/t,V/8t/L) 3[4 + 3[4 _OE 27&0"& (e (S7+G) e S) :
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N;=3fund g2=2 SSC noimprovement c=0.1

T
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tree-level improvement is a large effect for fixed ¢ method and the Clover observable
without improvement, results approach continuum result but with much larger cutoff effects

tree-level correction for Symanzik observable is much less visible

c=01: L=24,1=0.72 L=40,1=2.0 L=64,t=5.12

no surprise that smaller L has large cutoff effect, given the corresponding small t values
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N; = 3 fund g2 =1.5 infinite-volume Symanzik flow and operator
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similar good agreement of infinite-volume determination with perturbation theory at weaker

renormalized coupling 92: 1.5

continue to see consistency between infinite-volume method and fixed ratio approach at ¢ = 0.1

and same coupling

for orientation: the value 92: 1.5 corresponds to (xg =0.12

Lattice 2021 K Holland

coupling at Electroweak scale



QOutlook

determination of QCD coupling at Electroweak scale s (M) requires:

(1) making contact with perturbation theory at weak coupling to high accuracy
and

(2) connecting to a physical scale at strong coupling

test study of part (1) for SU(3) with Nf = 3 massless quarks looks promising,
reaching ~ 1% error in the beta-function in the continuum limit for g2 ~ 2

continuing to part (2) for this approach looks worthwhile, and could be competitive with step-
scaling determination
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more examples of interpolation at fixed volume and t value
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tree-level improvement through finite-lattice sum at each fixed t value via

N2 -1 .
(t*E(t)) = 923(128 5 )C(QZ/t,\/gt/L) arXiv:1406.0827 (6.2)
70
1987242 422 Lot
C(a?/t,V8t/L) = ;;t + 637; Tr (e U8"49)(89 4 ) 1 U H)se)
n,=0, n2#£0

choice of lattice gauge action for gradient flow, MC simulation, and action density observable

tree-level improvement does not include fermion effects

more likely to be useful for smaller Nf value Nf = 3 than in BSM studies with Nf = 10 or 12
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gradient flow beta-function to 3-loop order and connection to MS-bar scheme

& a,\?
o= G, [1 - a2 + @) - ealp) (32) +.-

d Harlander et al arXiv:1905.00882
2

K duzé‘p( p) = (N)Bp(ap)

A A 2 o0 A n
By(6y) = Zﬂp, ( ) =—%ﬁo—(%) 8= fpm (%) ,
n=2

with By and ;1 from Eq. (62). The third coefficient is given by

Boz = B2 — e1(p) B1 + (e2(p) — €3()) Bo,
with the MS coefficient 82 which we quote here for the SU(3) gauge group:

2857 5033 325 ,
32 —— — ——NfF+ —Ng.

eo(2) =eo0,  e1(z) =-e1o+ BoL(z),
e2(z) = e20 + (2Boe10 + B1) L(z) + B5 L*(2),

02 22 8
60,021, €10 = (§+§ln2—31n3) CA—§TF
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