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Brief Review of Lattice N = 4 super Yang-Mills Theory

We start with a twisted 4d N = 4 supersymmetric theory has 16
supercharges. On lattice we can only preserve one of them exactly.

The other 15 are broken by lattice artifacts and recovered only in the
continuum limit.

Bosons and fermions treated symmetrically meaning that they both
live on links as required by the exact susy and lattice gauge invariance.
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Brief Review of Lattice N = 4 super Yang-Mills Theory

A∗4 lattice is used as the underlying lattice structure which packs the 4
gauge fields and 6 scalars into 5 complex bosons each associated with
one of the basis vectors of the lattice. They are also valued in the
adjoint representation of the algebra not in the group.

All fields transform under the twisted rotation group

diag(SO(4)L × SO(4)R) (1)

Where L denotes the Lorentz Symmetry and R the R-Symmetry
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Q Invariant Construction

Let’s start with the supersymmetric lattice action

S =
N

4λ
Q
∑
x

Tr

(
χabFab + ηDaUa +

1

2
ηd

)
+ Sclosed (2)

The second term in the action Sclosed is given as.

Sclosed = − N

16λ

∑
x

Tr εabcdeχabDcχde (3)
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Q Invariant Construction

Carrying out the Q variation and integrating out the auxiliary field d we
obtain the supersymmetric lattice action S = Sb + Sf where

Sb =
N

4λ

∑
x

Tr

(
FabFab +

1

2
Tr (DaUa)2

)
(4)

and

Sf = − N

4λ

∑
x

(
Tr χabD[aψb] + Tr ηDaψa

)
(5)

Fermionic part of this action is also known as Kähler-Dirac action.

The continuum limit of this action corresponds to the Marcus or GL
twist of N = 4 Yang-Mills.

Goksu Can Toga (Syracuse University) July,29,2021 6 / 22



Regulating the flat directions

There are flat directions that corresponds to the classical vacuum
solutions of the bosonic action.

To regulate these flat directions we add a term that gives a vacuum
expectation value to the imaginary part of the trace mode of U

Smass = µ2
∑
x

Tr
(
Ua(x)Ua(x)− I

)2
(6)

This term gives masses to the scalars.

Lifts the degeneracy and provides a unique ground state.
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Controlling the U(1) modes

Since each link is an element of the algebra gl(N,C ), this formulations
naturally describes the gauge group U(N) = SU(N)× U(1).

Even though the U(1) gauge degrees of freedom decouple in the
continuum limit they introduce lattice artifacts at strong coupling and
need to be suppressed to access strong coupling regimes.

A Previous attempt to control this U(1) modes include,

A plaquette determinant term can go up to λ ∼ 10
arXiv: 1505.03135 by S. Catterall and D. Schaich
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New Action

Now we include a new term to the action which drives the determinant of
each individual gauge link to unity.

N

4λ
κQ
∑
x ,a

Tr (η) (Redet (Ua(x)− 1)) (7)

This term breaks the U(1) symmetry explicitly. But since U(1) is a
decoupled free theory in the continuum limit we are still preserving
the SU(N) gauge invariance.

Most important result of this new term is that it allows simulations to
access strong coupling regimes that was inaccessible with the original
action up to arbitrarily large couplings.
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Phase structure of the new action

As a first test, We plot the Expectation value of the link determinant vs λ
for 84 lattices at µ = 0.1, 0.05, 0.01.
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The expectation value is close to unity out to very large λ provided µ2 is
small enough confirming that we have effectively reduced the gauge fields
to SU(2).
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Phase structure of the new action

Next we look at the expectation value of the bosonic action
1
V < Sb >= 9N2

2 for an N color theory on a system with (lattice) volume
V independent of coupling λ.
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From these two plots we see that there is no phase transition as we
vary λ as expected for a N = 4 SYM.
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Phase structure of the new action

Finally we turn on to calculating a simple bilinear Ward identity given by〈
QTr (ηUaUa)

〉
= 0

-0.05
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Which is indeed small but not exactly 0 due to the thermal boundary
condition.
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Absence of a sign problem

Writing the Pfaffian phase as e iα(λ,U) we plot the quantity 1− cosα
as a function of µ.
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Pfaffian phase saturates as L→∞ and decreases as µ→ 0.

Goksu Can Toga (Syracuse University) July,29,2021 13 / 22



Supersymmetric Wilson Loops

We showed strong evidence that the lattice theory

Exists in a single phase with unbroken supersymmetry out to very
large coupling

And it can be simulated with a Monte Carlo algorithm without
encountering a sign problem.

We can turn on to confirming known results for N = 4 Yang-Mills at
strong coupling for Supersymmetric Wilson loops.
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Supersymmetric Wilson loops are generalization of regular Wilson
loops by including contibutions from the scalars and are realized in
the twisted construction by forming path ordered products of
complexified lattice gauge fields Ua
The holographic prediction for the supersymmetric Wilson loops is

that at strong coupling they depend on W (R,T ) = e(c
√
λT/R) not on

λ as expected from perturbation theory.
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Renormalized Supersymmetric Wilson Loops

Another interesting question is whether we can see evidence for a
non-abelian Coulomb potential at small R.

To probe for this is we define renormalized Wilson loops by dividing
the original Wilson loops by an appropriate power of the measured
Polyakov line P.

Renormalized Wilson loop on a L4 lattice:

W R(R,R) =
W (R,R)

P
2R
L

(8)
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Renormalized Supersymmetric Wilson Loops

Here we show the renormalized supersymmetric Wilson loops for 124

lattices.
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Notice that the 3× 3 and 6× 6 loops now lie near to each other
which is consistent with conformal invariance and the presence of a
non-abelian Coulomb term while the strong coupling behavior still
exhibits a dependence on

√
λ.
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Conclusions

The square root behavior at large λ is consistent with the result for
circular Wilson loops in N = 4 SYM derived by N. Drukker and D.
Gross. arXiv:hep-th/0010274

The strange
√
λ dependence cannot be seen in perturbation theory

and this preliminary result is a very non-trivial test of the correctness
of the lattice approach in a non-perturbative regime.

The current study has been limited to gauge group SU(2). It is
natural to inquire what occurs for this construction for other SU(N).
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Thanks for listening.
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Loop Size a
√
λ+b Reduced-χ2

4× 4 0.651978
√
λ + 8.04784 8.1069

2× 2 0.590375
√
λ + 8.86867 2.25436

Table: Normalized Supersymmetric Wilson loop fits on 84 lattice at µ = 0.025
for f (λ) = a

√
λ+ b

Loop Size a
√
λ+b Reduced-χ2

6× 6 0.888503
√
λ + 12.4715 6.5785

3× 3 0.86448
√
λ +12.9472 0.90153

Table: Normalized Supersymmetric Wilson loop fits on 124 lattice at µ = 0.025
for f (λ) = a

√
λ+ b
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Renormalization of Wilson loops.

Constant term in V (R) receives a e−Cx2R where the coefficient 2
comes from taking only the temporal like which mattter for the
propagation.

So we want to divide the loops by this coefficient. Polyakov loop itself
goes like e−TC so we need to divide by (P(1/T ))2R Letting T = L we
get P2R/L
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Volume dependence of Ward Identities
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Figure: Ward Identity vs L at λ=10
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