
Multigrid Solver on Fugaku

Hideo Matufuru (KEK), Issaku Kanamori (RIKEN), Ken-Ichi Ishikawa (Hiroshima U.)

July 28th/29th, 2021

The 38th International Symposium on Lattice Field Theory (Lattice 2021)

Outline

I. Kanamori: Lattice 2021, Jul. 2021 2/9

1. Introduction supercomputer Fugaku and QWS

2. Algorithm and Implementation fermion: Clover

3. Performance
4. Summary and Outlooks

Fugaku and QWS

I. Kanamori: Lattice 2021, Jul. 2021 3/9

cf. Y.Nakamura’s plenary talk, 30th July

Hardware specification https://www.r-ccs.riken.jp/en/fugaku/about/

• at RIKEN Center for Computational Science, Kobe, Japan
• theoretical peak: 488 PFlops(double), 977 PFlops(single), 1.94 EFlops(half)

• memory: 4.85 PiB
• network: Tofu Interconnect D (28 Gbps x 2 lane x 10 port)
• CPU: a64fx (Armv8.2-A SVE 512bit + Fujitsu extension)

• 48 cores: 12 cores × 4 core memory group (CMG)

• 3,072 GFlops (2.0 GHz, double) (∼ 1 KNL)
• HBM2 32 GiB, 1024 GB/s (∼ ×2 KNL in BW)

Software

Lattice QCD is one of targets of the co-design with the hardware design
outcome: QCD Wide SIMD library (QWS) https://github.com/RIKEN-LQCD/qws

• nested BiCGstab solver with domain decomposed preconditioner
• +100 PFlops on the almost whole Fugaku Y.Nakamura, APLAT2020

• each part (e.g. preconditioner, mult, etc.) can be called

We can use QWS as a building block of MG solver

we use a domain-decomposed preconditioner in QWS as a smoother

https://www.r-ccs.riken.jp/en/fugaku/about/
https://github.com/RIKEN-LQCD/qws

Algorithm and Implementation

I. Kanamori: Lattice 2021, Jul. 2021 4/9

application to QCD: R. Babich et al. PRL 105 (2010) 201602

our implementation is based on DDαAMG: A. Frommer et al. , SIAM J. Sci. Comput. 36 (2014) A1581

Multigrid solver is very efficient when the quark mass is small

Multigrid steps

• used as a preconditioner
• Restriction (R):

fine grid (original lattice)→ coarse grid

• Coarse grid solver: solve the coarse system
• Prolongation (P): coarse grid→ fine grid
• Smoother: improve the solution in the fine grid

R
−→

←−

P

fine grid coarse grid

12 dof/site 2Nvec dof/site

Our implementation

• 2-level multigrid, single prec.

• coarse solver: BiCGStab
• post smoother: multiplicative Schwarz Alternating Procedure (SAP)

inner: Jacobi iteration
• outer solver: Flexible BiCGStab

• setup: generate Nvec null space vectors
initial SAP + 4 times adaptive MG preconditioner

cf. DDαAMG : uses (e/o)[F]GMRes instead of [F]BiCGStab

Algorithm and Implementation: Domain size

I. Kanamori: Lattice 2021, Jul. 2021 5/9

domain size for restriction/prolongation , domain size for SAP

• domain decomposed algebraic restriction/prolongation
O(10)–O(100) domains (=coarse sites) in each process

domain size: 8 × 4 × 4 × 4 some constraints due to SIMD usage [next slide]

• SAP: 2 domains [fixed] in each process
implementation in QWS:

• 2 domains in x-direction
• x-extent of each domain must be multiple of 16 a constraint due to SIMD usage

[x-extent of the local volume must be multiple of 32]

Algorithm and Implementation: Implementation details

I. Kanamori: Lattice 2021, Jul. 2021 6/9

code base: Bridge++
https://bridge.kek.jp/Lattice-code/

SIMD variables (scalable vector extension, SVE) width: 512 bits

• real and imaginary parts: assigned to different vector variables
• site degrees of freedom: packed in SIMD vector with 2-dim tiling in x-y

(SAP in QWS: 1-dim tiling in x)
• the SIMD tiling divides the domain size,

and the coarse lattice uses the same tiling
on the coarse grid, O(# site/SIMD) = O(# thread)

Communication

• MPI persistent communication with Fujitsu extension: uses assistant cores to

accelerate the communication

Smoother employs QWS https://github.com/RIKEN-LQCD/qws

• multiplicative SAP (inner: Jacobi iterations)
• communication: uses low level API (uTofu), double buffering

https://bridge.kek.jp/Lattice-code/
https://github.com/RIKEN-LQCD/qws

Performance: elapsed time of 1 or 12 solves

I. Kanamori: Lattice 2021, Jul. 2021 7/9

Configurations:

• A: 323 × 64 lattice, Mπ = 156 MeV S.Aoki et al. [PACS-CS] Phys. Rev. D 79, 034503 (2009)

• B: 643 × 64 lattice, Mπ = 512 MeV T.Yamazaki et al. Phys. Rev. D 86, 074514 (2012)

• C: 963 × 96 lattice, Mπ = 145 MeV K.-I.Ishikawa et al. [PACS] LATTICE2015, 075 (2016)

b
e
t
t
e
r

←
−
−
−
−−

 0

 50

 100

 150

 200

 250

 300

A [16 nodes] B [16 nodes] C [216 nodes]

setup

elasped time [sec.]

LDDHMC 1 solve
MG16 setup+1 solve
MG32 setup+1 solve

 0

 100

 200

 300

 400

 500

 600

 700

A [16 nodes] B [16 nodes] C [216 nodes]

elasped time [sec.]

LDDHMC 12 solve
MG16 setup+12 solve
MG32 setup+12 solve

1 solve: setup overhead
is large

12 solves: MG solver is faster for light
enough quarks (A,C)

• LDDHMC: reimplementation of QWS in Domain Decomposed HMC (nested
BiCGStab with Domain Decomposition + SAP + mixed precision)

• MG16, MG32: Multigrid solver with nvec = 16, 32 MG32 for B did not run due to insufficient memory size

Performance: timing fraction

I. Kanamori: Lattice 2021, Jul. 2021 8/9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

A [16 nodes] B [16 nodes] C [216 nodes]
MG16 MG32 MG16 MG16 MG32

fraction in the solve

others
prlong/restrict

smoother
coarse solve

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200

no
de

 s
ec

on
ds

nodes

strong scaling: MG 16 [C: 964 lattice]

solve
smoother

coarse
P/R

others

relative fraction normalized by solving
time of MG16

reasonable strong scaling

Flops (single prec.): Config. C on 216 nodes, MG16
smoother 790 GFlops/node SAP from QWS is very efficient

coarse solver 91 GFlops/node

restrict 82 GFlops/node

prolong 125 GFlops/node

Fugaku 2.0 GHz: 6,144 GFlops/node (single prec)

Summary and Outlooks

I. Kanamori: Lattice 2021, Jul. 2021 9/9

• Efficient implementation of Multgrid solver on Fugaku is ready

will be publicly available in Bridge++

• Example of using QWS, an outcome of co-design activity for Fugaku
• Practically, 2-level algorithm is enough
• [further improvement in the coarse solver and the setup is underway]

Summary and Outlooks

I. Kanamori: Lattice 2021, Jul. 2021 9/9

• Efficient implementation of Multgrid solver on Fugaku is ready

will be publicly available in Bridge++

• Example of using QWS, an outcome of co-design activity for Fugaku
• Practically, 2-level algorithm is enough
• [further improvement in the coarse solver and the setup is underway]

Acknowledgments

• Computational resource: Fugaku (RIKEN Center for Computational Science), Flow

(Nagoya U.)

• Grants: JSPS KAKENHI(20K03961, 19K03837), MEXT as “Program for Promoting

Researches on the Supercomputer Fugaku” (Simulation for basic science: from

fundamental laws of particles to creation of nuclei), “Priority Issue 9 to be Tackled by

Using Post K Computer” and Joint Institute for Computational Fundamental Science

• Configurations: Japan Lattice Data Grid

• Bridge++ members and LQCD co-design team in flagship 2020 project

	Outline
	Fugaku and QWS
	Algorithm and Implementation
	Algorithm and Implementation: Domain size
	Algorithm and Implementation: Implementation details
	Performance: elapsed time of 1 or 12 solves
	Performance: timing fraction
	Summary and Outlooks

