
Benchmarking Tursa – multiple RHS Wilson operator
• 112 nodes of ATOS Sequana XH2000 with 4x A100-40 GPUs per node
• 2x AMD Rome 7H12 CPUs
• 1TB Ram
• 4 x HDR-200 infiniband per node
• Good (but not perfect) scalability
• This was the Edinburgh procurement benchmark
• ~80% of runtime of Grid Domain Wall QCD code
• Overlaps communication with computation

1

10

100

1000

1 10 100 1000

Te
ra

flo
p/

s

GPUs (1,4,64,256)

Nodes GPUs
Measured
Perf / GPU

Measured
TF/s

Ideal GPU
scaling

Ideal
Node

scaling
1 1 3.85 3.85 3.85
1 4 3.075 12.3 15.4 12.3

16 64 1.671875 107 246.4 196.8
64 256 1.484375 380 985.6 787.2

Benchmarking Tursa – multiple RHS Wilson operator
• 112 nodes of ATOS Sequana XH2000 with 4x A100-40 GPUs per node
• 2x AMD Rome 7H12 CPUs
• 1TB Ram
• 4 x HDR-200 infiniband per node
• Good (but not perfect) scalability
• This was the Edinburgh procurement benchmark
• ~80% of runtime of Grid Domain Wall QCD code
• Overlaps communication with computation

1

10

100

1000

1 10 100 1000

Te
ra

flo
p/

s

GPUs (1,4,64,256)

Nodes GPUs
Measured
Perf / GPU

Measured
TF/s

Ideal GPU
scaling

Ideal
Node

scaling
1 1 3.85 3.85 3.85
1 4 3.075 12.3 15.4 12.3

16 64 1.671875 107 246.4 196.8
64 256 1.484375 380 985.6 787.2

HIP and OpenMP targets

Grid: OneCode and FourAPIs
www.github.com/paboyle/Grid
Azusa Yamaguchi (University of Edinburgh)
Peter Boyle (Brookhaven National Laboratory)

Background:
Grid is a C++11 high level library for lattice Gauge theory[1,2]
It aims to be performance portable across all modern architectures
A number of LQCD software efforts make use of Grid for actions,
algorithms (solvers, multigrid, HMC, contraction primitives) [3].
Portability in across the Exascale roadmap requires support for AMD
(HIP), Intel (SYCL) and Nvidia (QUDA) GPUs in addition to vectorising
multicore architectures. Grid is a single source and targets all of these
APIs portably.

1. Grid: A next generation data parallel C++ QCD library : arXiv:1512.03487
2. Performance Portability Strategies for Grid C++ Expression Templates :
arXiv:1710.09409
3. Hadrons: https://github.com/aportelli/Hadrons

GPT: https://github.com/lehner/gpt
CPS: https://github.com/RBC-UKQCD/CPS
MILC: http://www.physics.utah.edu/~detar/milc/

Frontier AMD CPU, AMD GPU; HIP
Perlmutter AMD CPU, Nvidia GPU; CUDA

Aurora Intel CPU, Intel GPU; SYCL Summit IBM CPU, Nvidia GPU; CUDA

+ CPU computing is also not going away

template <class Impl> accelerator_inline

void WilsonKernels<Impl>::GenericDhopSite(StencilView &st,

DoubledGaugeFieldView &U, SiteHalfSpinor *buf, int sF,

int sU, const FermionFieldView &in, FermionFieldView &out)

{

typedef decltype(coalescedRead(buf[0])) calcHalfSpinor;

typedef decltype(coalescedRead(in[0])) calcSpinor;

calcHalfSpinor chi, Uchi;

calcSpinor result;

StencilEntry *SE;

const int Nsimd = SiteHalfSpinor::Nsimd();

const int lane=acceleratorSIMTlane(Nsimd);

…

SE = st.GetEntry(ptype, Dir, sF);

if (SE->_is_local) {

int perm= SE->_permute;

auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane);

spProj(chi,tmp);

} else {

chi = coalescedRead(buf[SE->_offset],lane);

}

acceleratorSynchronise();

Impl::multLink(Uchi, U[sU], chi, Dir, SE, st);

Recon(result, Uchi);

…

coalescedWrite(out[sF],result,lane);

}

Same optimised kernel transforms covariantly
between SIMD and SIMT.

Return type of coalescedRead dictates whether SOA or scalar
objects are processed by each computational thread.

Thread interleaving happens quite naturally on GPU with data
in memory stored in SOA layout.

Actual kernel code is 8 legs, and uses macro for each leg

* nvc++ constraints: probably will not differentiate host and
device types on a single compilation.

Covariant programming:

SIMD and SIMT differ semantically in whether local variables are vectors
or scalars

Naively poses a barrier to writing single source kernels which vectorise on
CPUs and read coalesce on GPUs.

C++ automatic type inference lets you avoid naming the types (vector or
scalar) so you can deduce the type according to the architecture following
simply programming idioms.

Combined with accelerator_for abstraction capturing and offloading loop
bodies in device lambda functions we can write high performance kernel
code that runs on all four API’s.

Wilson dslash kernel (sketch)

Same optimised kernel transforms
covariantly between GPU and CPU

Return type of coalescedRead dictates
whether SOA or scalar structs are processed
in each logical thread

Thread interleaving happens naturally on
GPU with memory resident data stored in
SOA.

CPU processes loop as SOA data with good
vectorisation.

FourAPIs and OneCode

// CUDA specific
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
return threadIdx.x;
}
#define accelerator_for2d(iter1, num1, iter2, num2, nsimd, ...). \
{ \
typedef uint64_t Iterator; \
auto lambda = [=] accelerator \
(Iterator iter1,Iterator iter2,Iterator lane) mutable { \
__VA_ARGS__; \

}; \
int nt=acceleratorThreads(); \
dim3 cu_threads(acceleratorThreads(),1,nsimd); \
dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \
LambdaApply<<<cu_blocks,cu_threads>>>(num1,num2,nsimd,lambda); \

}

Portability 101 – abstract the interfaces Performance Portability 102 – abstract the layout
// SYCL specific
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
return __spirv::initLocalInvocationId<3, cl::sycl::id<3>>()[2];
}
#define accelerator_for2d(iter1, num1, iter2, num2, nsimd, ...) \
theGridAccelerator->submit([&](cl::sycl::handler &cgh) { \

unsigned long nt=acceleratorThreads(); \
unsigned long unum1 = num1; \
unsigned long unum2 = num2; \
cl::sycl::range<3> local {nt,1,nsimd}; \
cl::sycl::range<3> global{unum1,unum2,nsimd}; \
cgh.parallel_for<class dslash>(\
cl::sycl::nd_range<3>(global,local), \
[=] (cl::sycl::nd_item<3> item) mutable { \
auto iter1 = item.get_global_id(0); \
auto iter2 = item.get_global_id(1); \
auto lane = item.get_global_id(2); \
{ __VA_ARGS__ }; \
}); \
});

Similar ideas to RAJA and Kokkos – use device lambda capture ;
lean internal interface to offload - HIP and OpenMP similar

0

100

200

300

400

500

600

700

8 12 16 20 24 28 32

Bi
di

re
ct

io
na

l b
an

dw
id

th
 G

B/
s p

er
 n

od
e

Local volume per GPU

Aggregate MPI bidirectional bandwidth per node (GB/s) on 16 nodes
Wirespeed = 200 GB/s

Host infiniband Host intranode GPU infiniband GPU Nvlink

90 % of wirespeed delivered to application

Nvidia performance:

Excellent performance on ATOS sequana A100 x 4 nodes with 4x HDR infiniband
(e.g. Juelich Booster + Edinburgh Tursa systems) – communication is key
6TF/s per node in multi-node operation.

Intel / Aurora
• Saturates memory bandwidth on both Iris XE max

(DG1) and Arctic Sound
• AMD/Frontier – code ports and run, but

performance is a work in progress.
• Fugaku port by Nils Meyer / Regensburg

Intel Gen 9 -> Aurora

• Code port was painless after getting abstraction for OpenMP/CUDA right.
• Use SyCL 2020 shared/device pointer model – massive usability enhancement to SyCL

• Performed HIP and SyCL port jointly and in the same week.
• Suggests abstraction was correct

• Can show DG1 / Iris Xe MAX results
• 170-201 GF/s fp32 depending on volume of data
• Performance very much in line with what is expected for the memory bandwidth

• Perhaps somewhat better at small volumes, likely cache effects

• Results on Arctic Sound and simulation projections for Aurora are known to Intel, those with NDA can ask Intel
• I think we are ready, save issues that arise when we hit real hardware (!)

Device Fp32 Dw GF/s Memory BW GB/s
DG1 170-201 GF/s 58 GB/s
V100 1750 GF/s 850GB/s

Long term resolution:
Peer-2-peer memory over NVlink, MPI over X Bus.

6.5TF/s
7TF/s on 144x24x24x24 !!!

MPI DMA

Fast local proj
& MPI buffer fill

Slower proj over NVlink
Within group of 3 GPUs

Nvprof from a single node on Summit

Nsight compute indicates on A100-40
• 82% of L2 cache saturation,
• 76% of HBM saturation
• 36% FMA pipeline usage

• Same source kernel runs SSE, AVX, AVX2, AVX512, A64FX, Cuda, HIP, SYCL

Conclusions:
Supercomputing companies are not helping scientific productivity with a
proliferation of programming models.
There is hidden commonality as they are all based on vector
computing
The semantic differences between CPU and GPU can be abstracted
and high performance portable source written
Other codes may wish to adopt these techniques

http://www.github.com/paboyle/Grid
https://github.com/aportelli/Hadrons
https://github.com/lehner/gpt
https://github.com/RBC-UKQCD/CPS
http://www.physics.utah.edu/~detar/milc/

