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Motivation



Introduction

Linear systems

• One of the most common problems in computational science and linear algebra is to solve systems

of linear equations.

• In lattice QCD calculations most of the computer time is typically spent in the numerical inversion

of the Dirac-Wilson operator:

DAB
αβ (n,m)ψB

β (m) = ηAα(n)

Iterative solvers

• Because of the very large size of the systems, trying to find the solution using a direct approach is

not very practical:

e.g.: for V = 483 × 96 ⇒ size(D−1) = (V × Nc × Ns × 2)2|Nc=3,Ns=4 ≈ 6.5× 1016

• We need to use iterative methods, like CG, BICG, BICG-STAB, etc., often combined with some

preconditioning: AMG, Gauss-Seidel, Machine Learning (see Brian Xiao’s poster), etc.
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Heterogeneous Systems

• Heterogeneous systems may contain multiple types of computational devices.

Common case: a Central Processing Unit (CPU) and a Graphics Processing Unit (GPU)

• Collection of devices in a heterogeneous system may include: CPUs, GPUs, FPGAs (Field

Programmable Gate Arrays), DSPs (Digital Signal Processors), ASICs (Application-Specific

Integrated Circuits), and AI chips (graph, neuromorphic, etc.).

• Each device has its pros/cons, so the next supercomputer architectures will probably combine

goodness of different types of accelerators.

e.g.: Cygnus at University of Tsukuba: first cluster equipped with CPUs-GPUs-FPGAs available

for public use

• Dealing with multiple types of devices, with different architectures and characteristics ⇒ different

programming and optimizations needs for each device. This is the motivation of the framework

SYCL and its different implementations.

• Here, we make use of a SYCL implementation called DPC++ (Data Parallel C++), developed by

INTEL.
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Goals of this project

Single-Source code

• One of the main attributes of SYCL/DPC++ is that programs can be single-source.

• The same source file can (it’s not mandatory!) contain both:

1. the code that defines the compute kernels to be executed on SYCL devices

2. the host code that manages the execution of different compute kernels

Short project description

• We consider a single-node DPC++ implementation of one of the simplest methods to

solve large and sparse linear systems, i.e. the Conjugate Gradient (CG) and we directly

apply it to the Wilson-Dirac operator.

• This implementation is executed on different devices (CPUs, GPUs and FPGAs) and we

test the performances.
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Short introduction to SYCL/DPC++



SYCL implementations

https://www.khronos.org/sycl/
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Example of vector addition in DPC++

#include <CL/sycl.hpp>

#include <iostream>

using namespace sycl;

int main(){

float A[1024], B[1024], C[1024];

//Initialize the arrays A, B...

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

accessor A(bufA, h, read_only);

accessor B(bufB, h, read_only);

accessor C(bufC, h, write_only);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}
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Create buffers using host pointers

Create a queue to submit work to a device

Read and write accessors create dependen-

cies if other kernels or host access buffers

Kernel enqueues a parallel for task.

Pass a lambda expression to

be executed by each work-item
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Some types of kernel invocations

q.single_task([=](){

for(int i=0;i<N;i++){

// CODE THAT RUNS ON DEVICE

}

});

q.parallel_for(range<1>{N},

[=](id<1> i){

// CODE THAT RUNS ON DEVICE

});

h.parallel_for(

nd_range<1>{global_size, work_group_size},

[=](nd_item<1> item){

// CODE THAT RUNS ON DEVICE

});

• Single task: invoke a kernel function

once on the target device.

• Basic parallel kernel: invoke a kernel

function on each iteration of the task

• ND-range kernel: programmer can split

the global size into smaller blocks,

called work-groups.

Example:

• if GPU hardware consists of a bunch

of compute units which has its own

local memory, we can group executions

so that each group executes on a

single compute unit.
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Numerical details



Numerical Setup

Some numerical details

• V = [44, 64, 84, 104, 124, 144];

• D = standard Wilson Dirac operator;

• to apply the CG algorithm, we solve for DD† (hermitian) and then multiply the solution by D†;

• single precision (float);

Sparse Matrix format

• Coordinate format (easy to implement, but not optimal for the Dirac operator). D is stored using
3 arrays:

1. values[N]: contains the value of the non-zero elements;

2. row[N]: contains the row-index of the non-zero elements;

3. col[N]: contains the column -index of the non-zero elements;

• SpMV pseudo-code:

for (k = 0; k < N; k = k + 1)

output[row[k]] = result[row[k]] + values[k]*input[col[k]];
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Algorithms and Hardware

Standard CG

ψ ← ψ0;

r ← η − DD†ψ;

p ← r ;

while |r | > rmin do

rold ← |r |;
α← rold

〈p|DD†|p〉 ;

ψ ← ψ + αψ;

r ← r − αDD†p;

β ← |r |/rold ;

p = r + βp;

end

Kernels implemented for:

Sparse Matrix Vector Multiplication (SpMV)

Dot product

Vector addition/difference

Hardware tested

• CPUs:

Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz

• GPUs:

Nvidia GeForce RTX 2080 Ti

A100-PCIE-40GB

• FPGAs: [https://devcloud.intel.com/oneapi/]

Intel Arria 10

Intel Stratix 10
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Results



CG speedup
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• work group size = number of threads per compute unit

• using the same source code, we observe a better scaling for GPUs
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SpMV performance - Roofline model
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[S.William et al., Commun. ACM, 52:65–76]

Naive Roofline model

P = min(π, β × I )

• P = attainable performance;

• π = peak performance;

• β = peak bandwidth;

• I = operational intensity;

• Max performance reached on A100: P ≈ 65GFlop/s

• Using the same source code, similar tests have been performed on FPGAs: P . 1GFlop/s
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Conclusions



Summary and Outlook

Conclusions

• SYCL/DPC++ seems a potentially good framework to run lattice QCD codes on different devices.

• We observe acceptable performances on CPUs/GPUs.

• On FPGAs, we need to explore different kernels and optimizations for these devices: at the

moment we seem far from a performing single-source code for CPU/GPU/FPGA.

Future plans

• Optimize code for Intel FPGAs and compare performances with other frameworks (OpenCL) and

hardware (Xilinx cards). [For other results on FPGAs, see G. Korcyl’s poster].

• Write a more specific algorithm for the Dirac operator.

• Combine CG with a preconditioner.
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Thank you very much
for your attention
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