
Implementation of the conjugate gradient algorithm for heterogeneous systems

Salvatore Cal̀ı1, William Detmold1, Grzegorz Korcyl2, Piotr Korcyl2, Phiala Shanahan1

Massachusetts Institute of Technology1, Jagiellonian University in Kraków2

July 28, 2021

Table of contents

1. Motivation

2. Short introduction to SYCL/DPC++

3. Numerical details

4. Results

5. Conclusions

1 / 13

Motivation

Introduction

Linear systems

• One of the most common problems in computational science and linear algebra is to solve systems

of linear equations.

• In lattice QCD calculations most of the computer time is typically spent in the numerical inversion

of the Dirac-Wilson operator:

DAB
αβ (n,m)ψB

β (m) = ηAα(n)

Iterative solvers

• Because of the very large size of the systems, trying to find the solution using a direct approach is

not very practical:

e.g.: for V = 483 × 96 ⇒ size(D−1) = (V × Nc × Ns × 2)2|Nc=3,Ns=4 ≈ 6.5× 1016

• We need to use iterative methods, like CG, BICG, BICG-STAB, etc., often combined with some

preconditioning: AMG, Gauss-Seidel, Machine Learning (see Brian Xiao’s poster), etc.

2 / 13

Heterogeneous Systems

• Heterogeneous systems may contain multiple types of computational devices.

Common case: a Central Processing Unit (CPU) and a Graphics Processing Unit (GPU)

• Collection of devices in a heterogeneous system may include: CPUs, GPUs, FPGAs (Field

Programmable Gate Arrays), DSPs (Digital Signal Processors), ASICs (Application-Specific

Integrated Circuits), and AI chips (graph, neuromorphic, etc.).

• Each device has its pros/cons, so the next supercomputer architectures will probably combine

goodness of different types of accelerators.

e.g.: Cygnus at University of Tsukuba: first cluster equipped with CPUs-GPUs-FPGAs available

for public use

• Dealing with multiple types of devices, with different architectures and characteristics ⇒ different

programming and optimizations needs for each device. This is the motivation of the framework

SYCL and its different implementations.

• Here, we make use of a SYCL implementation called DPC++ (Data Parallel C++), developed by

INTEL.

3 / 13

Goals of this project

Single-Source code

• One of the main attributes of SYCL/DPC++ is that programs can be single-source.

• The same source file can (it’s not mandatory!) contain both:

1. the code that defines the compute kernels to be executed on SYCL devices

2. the host code that manages the execution of different compute kernels

Short project description

• We consider a single-node DPC++ implementation of one of the simplest methods to

solve large and sparse linear systems, i.e. the Conjugate Gradient (CG) and we directly

apply it to the Wilson-Dirac operator.

• This implementation is executed on different devices (CPUs, GPUs and FPGAs) and we

test the performances.

4 / 13

Short introduction to SYCL/DPC++

SYCL implementations

https://www.khronos.org/sycl/

5 / 13

Example of vector addition in DPC++

#include <CL/sycl.hpp>

#include <iostream>

using namespace sycl;

int main(){

float A[1024], B[1024], C[1024];

//Initialize the arrays A, B...

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

accessor A(bufA, h, read_only);

accessor B(bufB, h, read_only);

accessor C(bufC, h, write_only);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

6 / 13

Example of vector addition in DPC++

#include <CL/sycl.hpp>

#include <iostream>

using namespace sycl;

int main(){

float A[1024], B[1024], C[1024];

//Initialize the arrays A, B...

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

accessor A(bufA, h, read_only);

accessor B(bufB, h, read_only);

accessor C(bufC, h, write_only);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Create buffers using host pointers

Create a queue to submit work to a device

Read and write accessors create dependen-

cies if other kernels or host access buffers

Kernel enqueues a parallel for task.

Pass a lambda expression to

be executed by each work-item

6 / 13

Example of vector addition in DPC++

#include <CL/sycl.hpp>

#include <iostream>

using namespace sycl;

int main(){

float A[1024], B[1024], C[1024];

//Initialize the arrays A, B...

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

accessor A(bufA, h, read_only);

accessor B(bufB, h, read_only);

accessor C(bufC, h, write_only);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Create buffers using host pointers

Create a queue to submit work to a device

Read and write accessors create dependen-

cies if other kernels or host access buffers

Kernel enqueues a parallel for task.

Pass a lambda expression to

be executed by each work-item

6 / 13

Example of vector addition in DPC++

#include <CL/sycl.hpp>

#include <iostream>

using namespace sycl;

int main(){

float A[1024], B[1024], C[1024];

//Initialize the arrays A, B...

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

accessor A(bufA, h, read_only);

accessor B(bufB, h, read_only);

accessor C(bufC, h, write_only);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Create buffers using host pointers

Create a queue to submit work to a device

Read and write accessors create dependen-

cies if other kernels or host access buffers

Kernel enqueues a parallel for task.

Pass a lambda expression to

be executed by each work-item

6 / 13

Example of vector addition in DPC++

#include <CL/sycl.hpp>

#include <iostream>

using namespace sycl;

int main(){

float A[1024], B[1024], C[1024];

//Initialize the arrays A, B...

{

buffer<float, 1> bufA { A, range<1> {1024} };

buffer<float, 1> bufB { B, range<1> {1024} };

buffer<float, 1> bufC { C, range<1> {1024} };

queue q;

q.submit([&](handler& h) {

accessor A(bufA, h, read_only);

accessor B(bufB, h, read_only);

accessor C(bufC, h, write_only);

h.parallel_for(range<1> {1024}, [=](id<1> i) {

C[i] = A[i] + B[i];

});

});

}

for (int i = 0; i < 1024; i++)

std::cout << "C[" << i << "] = " << C[i] << std::endl;

}

Create buffers using host pointers

Create a queue to submit work to a device

Read and write accessors create dependen-

cies if other kernels or host access buffers

Kernel enqueues a parallel for task.

Pass a lambda expression to

be executed by each work-item

6 / 13

Some types of kernel invocations

q.single_task([=](){

for(int i=0;i<N;i++){

// CODE THAT RUNS ON DEVICE

}

});

q.parallel_for(range<1>{N},

[=](id<1> i){

// CODE THAT RUNS ON DEVICE

});

h.parallel_for(

nd_range<1>{global_size, work_group_size},

[=](nd_item<1> item){

// CODE THAT RUNS ON DEVICE

});

• Single task: invoke a kernel function

once on the target device.

• Basic parallel kernel: invoke a kernel

function on each iteration of the task

• ND-range kernel: programmer can split

the global size into smaller blocks,

called work-groups.

Example:

• if GPU hardware consists of a bunch

of compute units which has its own

local memory, we can group executions

so that each group executes on a

single compute unit.

7 / 13

Some types of kernel invocations

q.single_task([=](){

for(int i=0;i<N;i++){

// CODE THAT RUNS ON DEVICE

}

});

q.parallel_for(range<1>{N},

[=](id<1> i){

// CODE THAT RUNS ON DEVICE

});

h.parallel_for(

nd_range<1>{global_size, work_group_size},

[=](nd_item<1> item){

// CODE THAT RUNS ON DEVICE

});

• Single task: invoke a kernel function

once on the target device.

• Basic parallel kernel: invoke a kernel

function on each iteration of the task

• ND-range kernel: programmer can split

the global size into smaller blocks,

called work-groups.

Example:

• if GPU hardware consists of a bunch

of compute units which has its own

local memory, we can group executions

so that each group executes on a

single compute unit.

7 / 13

Some types of kernel invocations

q.single_task([=](){

for(int i=0;i<N;i++){

// CODE THAT RUNS ON DEVICE

}

});

q.parallel_for(range<1>{N},

[=](id<1> i){

// CODE THAT RUNS ON DEVICE

});

h.parallel_for(

nd_range<1>{global_size, work_group_size},

[=](nd_item<1> item){

// CODE THAT RUNS ON DEVICE

});

• Single task: invoke a kernel function

once on the target device.

• Basic parallel kernel: invoke a kernel

function on each iteration of the task

• ND-range kernel: programmer can split

the global size into smaller blocks,

called work-groups.

Example:

• if GPU hardware consists of a bunch

of compute units which has its own

local memory, we can group executions

so that each group executes on a

single compute unit.

7 / 13

Some types of kernel invocations

q.single_task([=](){

for(int i=0;i<N;i++){

// CODE THAT RUNS ON DEVICE

}

});

q.parallel_for(range<1>{N},

[=](id<1> i){

// CODE THAT RUNS ON DEVICE

});

h.parallel_for(

nd_range<1>{global_size, work_group_size},

[=](nd_item<1> item){

// CODE THAT RUNS ON DEVICE

});

• Single task: invoke a kernel function

once on the target device.

• Basic parallel kernel: invoke a kernel

function on each iteration of the task

• ND-range kernel: programmer can split

the global size into smaller blocks,

called work-groups.

Example:

• if GPU hardware consists of a bunch

of compute units which has its own

local memory, we can group executions

so that each group executes on a

single compute unit.

7 / 13

Some types of kernel invocations

q.single_task([=](){

for(int i=0;i<N;i++){

// CODE THAT RUNS ON DEVICE

}

});

q.parallel_for(range<1>{N},

[=](id<1> i){

// CODE THAT RUNS ON DEVICE

});

h.parallel_for(

nd_range<1>{global_size, work_group_size},

[=](nd_item<1> item){

// CODE THAT RUNS ON DEVICE

});

• Single task: invoke a kernel function

once on the target device.

• Basic parallel kernel: invoke a kernel

function on each iteration of the task

• ND-range kernel: programmer can split

the global size into smaller blocks,

called work-groups.

Example:

• if GPU hardware consists of a bunch

of compute units which has its own

local memory, we can group executions

so that each group executes on a

single compute unit.

7 / 13

Numerical details

Numerical Setup

Some numerical details

• V = [44, 64, 84, 104, 124, 144];

• D = standard Wilson Dirac operator;

• to apply the CG algorithm, we solve for DD† (hermitian) and then multiply the solution by D†;

• single precision (float);

Sparse Matrix format

• Coordinate format (easy to implement, but not optimal for the Dirac operator). D is stored using
3 arrays:

1. values[N]: contains the value of the non-zero elements;

2. row[N]: contains the row-index of the non-zero elements;

3. col[N]: contains the column -index of the non-zero elements;

• SpMV pseudo-code:

for (k = 0; k < N; k = k + 1)

output[row[k]] = result[row[k]] + values[k]*input[col[k]];

8 / 13

Algorithms and Hardware

Standard CG

ψ ← ψ0;

r ← η − DD†ψ;

p ← r ;

while |r | > rmin do

rold ← |r |;
α← rold

〈p|DD†|p〉 ;

ψ ← ψ + αψ;

r ← r − αDD†p;

β ← |r |/rold ;

p = r + βp;

end

Kernels implemented for:

Sparse Matrix Vector Multiplication (SpMV)

Dot product

Vector addition/difference

Hardware tested

• CPUs:

Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz

• GPUs:

Nvidia GeForce RTX 2080 Ti

A100-PCIE-40GB

• FPGAs: [https://devcloud.intel.com/oneapi/]

Intel Arria 10

Intel Stratix 10

9 / 13

mailto:@
https://devcloud.intel.com/oneapi/

Results

CG speedup

0 10 20 30 40 50 60 70
0

10

20

30

40

50

• work group size = number of threads per compute unit

• using the same source code, we observe a better scaling for GPUs
10 / 13

SpMV performance - Roofline model

10 -2 10 0 10 2
10 0

10 2

10 4

10 6

[S.William et al., Commun. ACM, 52:65–76]

Naive Roofline model

P = min(π, β × I)

• P = attainable performance;

• π = peak performance;

• β = peak bandwidth;

• I = operational intensity;

• Max performance reached on A100: P ≈ 65GFlop/s

• Using the same source code, similar tests have been performed on FPGAs: P . 1GFlop/s

11 / 13

Conclusions

Summary and Outlook

Conclusions

• SYCL/DPC++ seems a potentially good framework to run lattice QCD codes on different devices.

• We observe acceptable performances on CPUs/GPUs.

• On FPGAs, we need to explore different kernels and optimizations for these devices: at the

moment we seem far from a performing single-source code for CPU/GPU/FPGA.

Future plans

• Optimize code for Intel FPGAs and compare performances with other frameworks (OpenCL) and

hardware (Xilinx cards). [For other results on FPGAs, see G. Korcyl’s poster].

• Write a more specific algorithm for the Dirac operator.

• Combine CG with a preconditioner.

12 / 13

Thank you very much
for your attention

13 / 13

	Motivation
	Short introduction to SYCL/DPC++
	Numerical details
	Results
	Conclusions

