
Evaluation of SU(3) smearing
on FPGA accelerator cards

Salvatore Cali∗,+, Grzegorz Korcyl† and Piotr Korcyl∗
† Institute of Applied Computer Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
∗ Institute of Theoretical Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
+ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

calis@mit.edu, grzegorz.korcyl@uj.edu.pl, piotr.korcyl@uj.edu.pl

1. Introduction
Recent FPGA accelerator cards promise large acceleration factors for some specific computational tasks. In the context of Lattice QCD calculations,
we investigate the possible gain of moving the SU(3) gauge field smearing routine to such accelerators. We study Xilinx Alveo U280 cards and use the
associated Vitis high-level synthesis framework. We discuss the possible pros and cons of such a solution based on the gathered benchmarks.

2. APE smearing stencil
APE smearing stencil averages neighbouring,
parallel gauge links in an gauge invariant man-
ner by evaluating 6 staples matrices and aver-
aging them with some appropriate weights, as
sketched on the figure:

We assume that the gauge links have been trans-
ferred from the host to the HBM memory. Next,
the links are streamed in the same order to the
programmable logic, where they are transformed
and stored back in the HBM memory. This pro-
cess can be iterated. Ultimately, the smeared
gauge field is transferred back to the host.

3. Pipelined and streamlined design

Schematic view of data flow in the
HBM-kernel-kernel-HBM stream with cyclic

buffers (orange) implemented in the U/BRAM

4. Resource consumption
Composition of multiply_by_staple function

component # latency interval DSP FF LUT
grp_compute_staple_forward_fu 3 39 2 400 31231 21159
grp_compute_staple_backward_fu 3 39 2 400 31231 21159

grp_add_two_fu 3 4 1 36 2827 2178

Comparison of resource consumption of various compute kernels for different data types compiled
for U280 card at 300 MHz with Vitis HLS 2020.2 (resources in % of total / of one SLR)

function prec. latency II BRAM DSP FF LUT
compute_staple_forward double 65 2 0 12 / 37 5 / 16 6 / 18
compute_staple_forward double 67 4 0 6 / 18 3 / 10 3 / 9
compute_staple_forward double 71 8 0 3 / 9 2 / 6 1 / 5

multiply_by_staple double 90 2 0 77 / 231 34 / 103 39 / 118
multiply_by_staple double 93 4 0 38 / 115 21 / 63 21 / 63
multiply_by_staple double 99 8 0 19 / 57 13 / 41 11 / 34

compute_staple_forward float 69 2 0 5 / 16 2 / 7 2 / 7
compute_staple_forward float 72 4 0 2 / 8 1 / 4 1 / 4

multiply_by_staple float 100 2 0 17 / 104 15 / 47 16 / 50
multiply_by_staple float 105 4 0 17 / 52 10 / 30 9 / 29

compute_staple_forward half 72 2 0 4 / 13 1 / 4 1 / 4
multiply_by_staple half 103 2 0 27 / 82 10 / 31 9 / 29

su3_projection double 869 8 0 14 / 43 10 / 31 8 / 26
su3_projection float 899 4 0 13 / 39 7 / 23 7 / 23
su3_projection half 909 2 0 20 / 62 8 / 24 7 / 23

full double 989 8 0 33 / 100 25 / 75 20 / 62
full float 1022 4 0 30 / 91 17 / 53 17 / 53
full half 1037 4 0 24 / 73 11 / 35 11 / 35
full half 1014 2 0 49 / 147 19 / 57 17 / 53

5. Timings and performance
Smearing of one gauge link (9 complex floating
point numbers) requires:

• 18× 9 = 162 floating point memory loads,

• 324× 12 + 108 = 3996 FLOPs.
and 2790 FLOPs for the SU(3) projection which
we do with 4 iterations following JHEP0508
(2005) 051.

The HBM memory on the Xilinx U280 card has
32 512-bit wide ports which can run at 300 MHz.
One data package contains 4 × 18 = 72 floating
point numbers.

total size # 512-bit initiation
in bits words interval

double 4608 9 2 - 9
float 2304 4.5 2 - 5
half 1652 2.25 2 - 3

The initiation interval inferred from the HBM-
programmable logic memory bandwidth sets the
performance limit on a single kernel.

precision II staples
[GFLOP/s] [GFLOP/s]

double 8 150 105
float 4 300 210
half 2 600 420

Estimated total performance assuming one kernel
(smearing of gauge links in one direction) in each
of the 3 SLR

precision # kernels [GFLOP/s]
double 3 765
float 3 1530
half 3 3060

6. Conclusions
• efficient single kernels but difficult to route and place including cyclic buffers
• need to optimize data flow infrastructure by hand to improve routing and minimize congestion

problems at the memory banks

7. Acknowledgements
Work supported Foundation for Polish Science grant no. TEAM/2017-4/39, by the Polish Ministry for Science and Higher Education grant no. 7150/E-
338/M/2018, and by the Priority Research Area Digiworld under the program Excellence Initiative – Research University at the Jagiellonian University
We gratefully acknowledge hardware donations from Xilinx within the Xilinx University Program.


