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Introduction
• Lattice QCD is a computational framework to simulate the strong 

interactions between quarks and gluons, and provides essential 
theoretical  input to nuclear and high energy physics research.

• Computationally expensive. Need as many resources as we can get.
• Multi-prong approach to exascale performance portability

• HIP, SyCL, Kokkos are all being investigated
• OpenMP as another possible path to performance portability

Grid and GridMini
• Grid [1] is a modern C++ library for lattice QCD
• Arranges the data layout as if the lattice is divided into virtual “sub-

lattices”, with one SIMD lane for each sublattice. 
• Same data layout can be mapped to GPU architectures
• Extensive use of templates for high-level abstraction
• Custom expression template engine for performance
• Header file with macros to encapsulate architecture-dependent 

implementations
#ifdef GRID_NVCC
#define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline
#define accelerator_for (…) { //CUDA kernel}
#else
#define strong_inline __attribute__((always_inline)) 
inline
#define accelerator
#define accelerator_inline strong_inline
#define accelerator_for(…)  thread_for(…) //for loop with 
#pragma omp parallel for

• Custom AlignedAlloctor for dynamic memory allocation on 
different architecture

#ifdef GRID_NVCC
if ( ptr == (_Tp *) NULL ) auto err = 

cudaMallocManaged((void **)&ptr,bytes);
#else 
#ifdef HAVE_MM_MALLOC_H
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) 

_mm_malloc(bytes,GRID_ALLOC_ALIGN);
#else
…

• GridMini [2]: A substantially reduced version of Grid for 
experimentation with different programming models. 

• Retains same Grid structure: data structures/types, data layout, 
aligned allocators, macros, …

• Only keeps the high-level components necessary for the 
benchmarks.

[1] https://github.com/paboyle/Grid
[2] https://github.com/meifeng/GridMini

OpenMP Offloading w/ Map
• Using cudaMallocManaged is not portable to other GPUs.
• Best to replace it with OpenMP pragmas or APIs for portability.
• Use declare mapper to simplify data mapping of complex

objects
#pragma omp declare mapper(decltype(xv) x)
map(x._odata[0:x.size()]) map(x)

• Use omp target enter/exit data for data movement
#pragma omp target enter data map(alloc:zv) map(to:xv)
map(to:yv)

• So far only works with mainline LLVM (last tested with
llvm/12.0.0-git_20210117): _odata is still a composite object.
• Results on Cori-GPU with NVIDIA V100

• llvm map: compiled with LLVM with the above data
mapping
• llvm managed: use cudaMallocManaged without

explicit data mapping
• llvm map+managed: use cudaMallocManaged with data

mapping
• nvcc managed: CUDA version with

cudaMallocManaged compiled with nvcc

OpenMP Offloading w/ UVM
• SU(3)✕SU(3) benchmark: STREAM-like memory bandwidth test
• Important as LQCD is bandwidth bound. 

double start=usecond();
for(int64_t i=0;i<Nloop;i++){

z=x*y; //x,y,z are all arrays of 3x3 matrices
}
double stop=usecond();
double time=(stop-start)/Nloop*1000.0;

double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
double bandwidth=bytes/time; //GB/s
double Gflops=flops/time;    //0.9 flops/byte SP

• To enable OpenMP offloading requires two considerations
• New macros for OpenMP target offloading
#elif defined (OMPTARGET)
#define accelerator_inline strong_inline
#define accelerator_for(iterator,num,nsimd, ... )  \
{                                                  \

_Pragma("omp target teams distribute parallel for”) \
naked_for(iterator, num, { __VA_ARGS__ }); \

}

• Optionally can add num_teams and 
thread_limit to the omp target pragma. 

• Memory management: CUDA UVM for simplicity
#if definded (GRID_NVCC) || defined (OMPTARGET_MANAGED)

if ( ptr == (_Tp *) NULL ) auto err = 
cudaMallocManaged((void **)&ptr,bytes);

• Results on Cori-GPU with NVIDIA V100 
• CUDA implementation as comparison (compiled with 

nvcc, cuda 11)
• LLVM/Clang compiler two versions tested (mainline 

9/25/2020 and 01/17/2021) 
• gcc: gcc/10-devel-omp_20201218
• cce: Cray cce/11.0.1
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