
HotQCD on multi-GPUs

D. Bollweg
for the HotQCD Collaboration

Bielefeld University

Lattice 2021, MIT, 07/28/2021

Outline Faculty of Physics

1 Introduction

2 Code design

3 Simple examples

4 Performance

5 Summary & Outlook

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 1 / 11

HotQCD GPU Code Faculty of Physics

I GPU Code for lattice QCD (quenched, staggered or HISQ gauge field generation, gradient
flow, etc ...).

I Started in late 2017/2018 by Lukas Mazur as a thesis project, quickly became the new
standard within HotQCD.

I Written in C++ with CUDA (or HIP*) for GPU acceleration.

I Multi-GPU support, D2D communication via CUDA P2P, CUDA-aware MPI and regular
MPI (user choice).

I In use in large-scale computing projects on Top500 systems including Summit (OLCF),
Marconi100 (CINECA), JUWELS (JSC), Piz Daint (CSCS).

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 2 / 11

HotQCD GPU Code Faculty of Physics

Contributors:
Akio Tomiya, Alexei Bazavov, Anirban Lahiri, Anna-Lena Lorenz, Battogtokh Purev, Bent
Buttwill, Christian Schmidt, David Clarke, Dennis Bollweg, Dibyendu Bala, Fabian Hesse,
Frithjof Karsch, Guido Nicotra, Hai-Tao Shu, Hauke Sandmeyer, Heng-Tong Ding, Hiroshi
Ohno, Jishnu Goswami, Kevin Zambello, Lorenzo Dini, Luis Altenkort, Lukas Mazur, Marcel
Rodekamp, Marius Neumann, Markus Klappenbach, Min Lin, Mischa Jaensch, Mugdha Sarkar,
Olaf Kaczmarek, Peter Petreczky, Philipp Scior, Prasad Hegde, Qing Yuan, Rasmus Larsen,
Rishabh Thakkar, Sajid Ali, Shengtai Li, Simon Dentinger, Simran Singh, Swagato Mukherjee,
Tristan Ueding, Wei-Ping Huang, Xiao-Dan Wang, Yu Zhang, ... and many others!

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 3 / 11

Code design Faculty of Physics

We want our code to be:

I Intuitive & accessible for physics users,

I future-proof,

I performant.

I Follow OOP paradigm.

I Separate low-level GPU code from
high-level “physics” code.

I Expression templates and overloading to
express calculations intuitively without
sacrificing performance.

I Custom kernels via function objects.

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 4 / 11

Code design Faculty of Physics

Distribution onto multiple GPUs:

I Split lattice onto GPUs (blue).

I Extend local lattices by halos (red).

I Communicate halos for stencil
computations.

I Overlap communication &
computation.

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 5 / 11

Simple examples Faculty of Physics

Gaugefield<floatT, true, HaloDepth> gauge(...);

//simply multiply/add your physics objects

gauge = 2 * gauge;

gauge = gauge * 0.5 + gsu3_one<floatT>();

//update halos (if necessary)

gauge.updateAll();

//define custom kernel as function object

template<class floatT, size_t HaloDepth>

struct SimpleGaugeFunctor {

gaugeAccessor<floatT> gAcc;

SimpleGaugeFunctor(Gaugefield<floatT, true, HaloDepth> &gaugeIn) :

gAcc(gaugeIn.getAccessor()) {}

__host__ __device__ GSU3<floatT> operator()(gSiteMu thisLink) {

GSU3<floatT> result = 2 * gAcc.getLink(thisLink);

return result;

}

};

//call custom kernel with iterateOver... methods:

gauge.iterateOverBulkAllMu(SimpleGaugeFunctor(gauge));

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 6 / 11

Performance - Multi-RHS /D Faculty of Physics

∼60% of (HISQ) RHMC run time is spent performing matrix inversions (CG) dominated by /Dψx computation.

/Dψx =

4∑
µ=0

[(
Vx,µχx+µ̂ − V †x−µ̂,µχx−µ̂

)
+
(
Wx,µχx+3µ̂ −W †x−3µ̂,µχx−3µ̂

)]
Vx,µ : 3× 3 complex matrix, Wx,µ : U(3) matrix

I 1146 FLOP/site, 1560 byte/site → FLOP/byte ∼ 0.73. /Dψx computation is bandwidth bound!

I Arithmetic intensity can be increased by applying the gauge field to multiple right-hand sides (rhs) at
once. 10 rhs: FLOP/byte ∼ 2.19.

I Further improvement by using link-compressed Wx,µ.

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 7 / 11

Performance - JUWELS Booster Faculty of Physics

I Setup: 963 × 16 lattice, single
precision.

I up to 5.5 TFLOP/s ∼ 37% of A100
peak FP32.

I up to 1.36 TB/s memory throughput.

I up to 19 TFLOP/s on a single Booster
node (4xA100).

 0

 5

 10

 15

 20

 0 2 4 6 8 10
T
FL

O
P
/s

#RHS

Multi-RHS DSlash

1xA100
2xA100
3xA100
4xA100

Figure: Multi-GPU performance of Multi-RHS /D.

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 8 / 11

Performance - Multi-GPU scaling Faculty of Physics

I RHMC setup: 643 × 16 global lattice
size, T = 135MeV, phys. quark
masses, single precision.

I HISQ-specific smearing and force
kernels achieve nearly perfect scaling.

I RHMC scaling determined by /D, both
achieve very good on-node scaling. 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

sp
e
e
d
u
p

#GPUs

Dslash
Fermion Force

RHMC

Figure: Multi-GPU scaling of /D, force kernels and RHMC.

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 9 / 11

Performance - HIP Faculty of Physics

Approach for incorporating HIP:

I No replacement for CUDA back end,
both will be kept in the code.

I Wrap CUDA API functions with
macros in central wrapper header.

I Hipify the code.

I Due to code design, only few lines in
back end code are changed.

I Virtually no performance difference
between HIP & CUDA back ends on
Summit!

I Benchmarks on AMD still to come.

-0.1

-0.05

 0

 0.05

 0.1

 2 4 6 8 10 12

Pe
rf

.
d
iff

.
H

IP
 v

s.
 C

U
D

A
 [

T
FL

O
P
/s

]

#RHS

Summit - 1xV100

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 10 / 11

Summary & Outlook Faculty of Physics

I We are developing a lattice QCD GPU code based on modern C++ with CUDA and
HIP* back ends.

I Our code achieves good performance and on-node scaling across recent supercomputer
architectures.

I Preparations for the exascale: HIP on NVIDIA GPUs looks promising, benchmarks on
AMD GPUs are planned.

I Preparations for a future open source release are ongoing.

Dennis Bollweg HotQCD on multi-GPUs Lattice 2021 11 / 11

	Introduction
	Code design
	Simple examples
	Performance
	Summary & Outlook

