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HotQCD GPU Code Faculty of Physics

I GPU Code for lattice QCD (quenched, staggered or HISQ gauge field generation, gradient
flow, etc ...).

I Started in late 2017/2018 by Lukas Mazur as a thesis project, quickly became the new
standard within HotQCD.

I Written in C++ with CUDA (or HIP*) for GPU acceleration.

I Multi-GPU support, D2D communication via CUDA P2P, CUDA-aware MPI and regular
MPI (user choice).

I In use in large-scale computing projects on Top500 systems including Summit (OLCF),
Marconi100 (CINECA), JUWELS (JSC), Piz Daint (CSCS).
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HotQCD GPU Code Faculty of Physics
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Code design Faculty of Physics

We want our code to be:

I Intuitive & accessible for physics users,

I future-proof,

I performant.

I Follow OOP paradigm.

I Separate low-level GPU code from
high-level “physics” code.

I Expression templates and overloading to
express calculations intuitively without
sacrificing performance.

I Custom kernels via function objects.
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Code design Faculty of Physics

Distribution onto multiple GPUs:

I Split lattice onto GPUs (blue).

I Extend local lattices by halos (red).

I Communicate halos for stencil
computations.

I Overlap communication &
computation.
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Simple examples Faculty of Physics

Gaugefield<floatT, true, HaloDepth> gauge(...);

//simply multiply/add your physics objects

gauge = 2 * gauge;

gauge = gauge * 0.5 + gsu3_one<floatT>();

//update halos (if necessary)

gauge.updateAll();

//define custom kernel as function object

template<class floatT, size_t HaloDepth>

struct SimpleGaugeFunctor {

gaugeAccessor<floatT> gAcc;

SimpleGaugeFunctor(Gaugefield<floatT, true, HaloDepth> &gaugeIn) :

gAcc(gaugeIn.getAccessor()) {}

__host__ __device__ GSU3<floatT> operator()(gSiteMu thisLink) {

GSU3<floatT> result = 2 * gAcc.getLink(thisLink);

return result;

}

};

//call custom kernel with iterateOver... methods:

gauge.iterateOverBulkAllMu(SimpleGaugeFunctor(gauge));
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Performance - Multi-RHS /D Faculty of Physics

∼60% of (HISQ) RHMC run time is spent performing matrix inversions (CG) dominated by /Dψx computation.

/Dψx =

4∑
µ=0

[(
Vx,µχx+µ̂ − V †x−µ̂,µχx−µ̂

)
+
(
Wx,µχx+3µ̂ −W †x−3µ̂,µχx−3µ̂

)]
Vx,µ : 3× 3 complex matrix, Wx,µ : U(3) matrix

I 1146 FLOP/site, 1560 byte/site → FLOP/byte ∼ 0.73. /Dψx computation is bandwidth bound!

I Arithmetic intensity can be increased by applying the gauge field to multiple right-hand sides (rhs) at
once. 10 rhs: FLOP/byte ∼ 2.19.

I Further improvement by using link-compressed Wx,µ.
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Performance - JUWELS Booster Faculty of Physics

I Setup: 963 × 16 lattice, single
precision.

I up to 5.5 TFLOP/s ∼ 37% of A100
peak FP32.

I up to 1.36 TB/s memory throughput.

I up to 19 TFLOP/s on a single Booster
node (4xA100).
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Figure: Multi-GPU performance of Multi-RHS /D.
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Performance - Multi-GPU scaling Faculty of Physics

I RHMC setup: 643 × 16 global lattice
size, T = 135MeV, phys. quark
masses, single precision.

I HISQ-specific smearing and force
kernels achieve nearly perfect scaling.

I RHMC scaling determined by /D, both
achieve very good on-node scaling.  1
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Figure: Multi-GPU scaling of /D, force kernels and RHMC.
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Performance - HIP Faculty of Physics

Approach for incorporating HIP:

I No replacement for CUDA back end,
both will be kept in the code.

I Wrap CUDA API functions with
macros in central wrapper header.

I Hipify the code.

I Due to code design, only few lines in
back end code are changed.

I Virtually no performance difference
between HIP & CUDA back ends on
Summit!

I Benchmarks on AMD still to come.
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Summary & Outlook Faculty of Physics

I We are developing a lattice QCD GPU code based on modern C++ with CUDA and
HIP* back ends.

I Our code achieves good performance and on-node scaling across recent supercomputer
architectures.

I Preparations for the exascale: HIP on NVIDIA GPUs looks promising, benchmarks on
AMD GPUs are planned.

I Preparations for a future open source release are ongoing.
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