
D9

Tensor Core Acceleration of Math Intensive Kernels in QUDA
M. A. Clark (mclark@nvidia.com), Jiqun Tu (jtu@nvidia.com), Mathias Wagner

(mathiasw@nvidia.com) and Evan Weinberg (eweinberg@nvidia.com)

Tensor Core on NVIDIA GPUs

The matrix multiply-accumulate (MMA) operations are dras-
tically sped up on NVIDIA GPUs with the tensor core units,
which are available starting from the Volta architecture. Start-
ing from the Ampere architecture, a variety of data types, in-
cluding FP64, FP16, BF16 (Brain Floating Point Format, or
bfloat16), TF32 (TensorFloat-32), INT8, INT4, and Binary, are
supported. On an A100 GPU, the theoretical peak half precision
MMA (HMMA) performance reaches a stunning 312 TFLOPS.
We have been working on using the tensor core units to accel-
erates the math intensive workflow in lattice QCD calculations
under the framework of QUDA, a library for performing calcu-
lations in lattice QCD on GPUs. A light-weighted abstraction
of the CUDA PTX MMA instruction is added in order to effi-
ciently stage data through the different layers of GPU memory.

Multi-BLAS Operations

The multi-BLAS operations, which calculates block inner prod-
ucts of the shape,

ci, j = ⟨ai,b j⟩, i ≤ m, j ≤ n,

are equivalent to general matrix multiplications (GEMMs) of
shape (m,n,k), i.e the multiplication of an m-by-k matrix A with
an k-by-n matrix B to get an m-by-n matrix C, where k ≫ m,n
is the degrees of freedom of the underlying vectors. They be-
come compute bound as m and n go larger, e.g. in the block-
orthorgonalization part of the multi-grid setup steps. The tensor
core units, especially the double precision MMA (DMMA) in-
structions, could be used to speed up these math intensive oper-
ations. It is also possible to use three BF16 MMA to reach the
accuracy of a 16-bit MMA for multi-BLAS performed with 16-
bit half precision: this is done by representing the 15 (= 16−1
due to the sign bit) bits with two BF16 numbers (each has 7 bits
for mantissa) whose total mantissa bits are sufficient to cover
the needed 15 bits, i.e. (1+7)×2 > 15. The arithmetic is done
in the natural high-low way:

(ahigh+alow)× (bhigh+blow) = ahigh×bhigh+ahigh×blow

+alow×bhigh+ ����������������

alow×blow,

where the last contribution is dropped.

This is still work in progress.

k ≫ m,n m

n

k

Local Preconditioning for Domain Wall Fermion

In [arXiv:2104.05615] the multi-splitting algorithm is used as a preconditioner for the domain wall Dirac
operator in order to reduce the inter-node communication cost, at the expense of performing more on-
node floating point and memory operations. The local preconditioner, whose performance is critical to
achieving an overall speed up with the algorithm, is implemented with, among other strategies, the half
precision MMA (HMMA) instruction to perform the application of the M−1

5 operator, which is in nature
a dense matrix multiplication.

=

M−1
5 , column major input vector, row major output vector, row major

pad to reduce bank conflict

Ls(16) × spin(4)

Ls(16) × spin(4) 4d(16) × color(3) × complex(2) 4d(16) × color(3) × complex(2)

×

tensor core: ×16

16

+ × + × =

Coarse Link Construction in Multi-grid Setup

Tensor cores are used to accelerate the dense matrix multiplications in coarse link construction in the
multi-grid setup steps [arXiv:1612.07873], where dense complex matrix multiplications are performed
between fine grid gauge links U (or the generalized coarse links Y in the case of coarsening the coarse
links) and near-null vectors V :

Y =V †UV.
In practice the link is constructed by first computing the UV product and then V †UV . The resulting
coarse grid operator takes the form

D̂ = Xδx̂,ŷ+∑
µ

Y µδx̂,ŷ−µ̂ +Y−µδx̂,ŷ+µ̂,

where X is the diagonal part of V †UV (the contribution when U does not cross the sub-block boundaries),
x̂ and ŷ are the coarse grid coordinates. To take advantage of the Schur decomposition the even-odd
preconditioned coarse links Ŷ are to be calculated,

Ŷ = X−1Y.

We need to take a custom approach towards what would otherwise be a batched-GEMM operation to take
advantage of QUDA’s unique 16-bit fixed-precision format, exploit maximum parallelism, and maintain
determinism:

1 Coarse links are aggregates of fine-grid contractions within sub-blocks. To maximize parallelism
while maintaining determinism, portions of V †UV are computed locally via tensor core acceleration,
then converted to a 32-bit integer format before atomic accumulation.

2 The 16-bit fixed-point representation (half precision) requires a scale set by the maximum absolute
value of the coarse links. To optimize the dynamic range of the 16-bit format, a two-pass algorithm is
needed: in the first pass the matrix multiplication is computed but only the maximum absolute value
among the entries of the output matrix is recorded. The output matrix is computed and stored in the
second pass after the input matrices are scaled according to the maximum value obtained from the first
pass.

We see significant speed up from using tensor cores in all stages of coarse link construction. The fol-
lowing numbers are measured on a workflow coarsening from a 8× 8× 8× 16 grid with Nc = 24 to a
4× 4× 4× 8 grid with Nc = 64. 16-bit half precision are used so the TFLOPS and speed up numbers
cover both passes.

Stage V100 TFLOPS V100 speed up A100 TFLOPS A100 speed up

UV 22.7 13.0 48.4 12.1

V †UV 6.5 1.5 11.4 2.0

X−1Y 42.0 9.2 70.6 11.6


