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Topological sampling through windings

David Albandea,! Pilar Herndndez,! Alberto Ramos,! and Fernando Romero-Lépez!

'IFIC (CSIC-UVEG), Edificio Institutos Investigacion, Apt. 22085, E-46071 Valencia, Spain
(Dated: June 27, 2021)

We propose a modification of the Hybrid Monte Carlo (HMC) algorithm that overcomes the
topological freezing of a two-dimensional U(1) gauge theory with and without fermion content.
This algorithm includes reversible jumps between topological sectors—winding steps—combined
with standard HMC steps. The full algorithm is referred to as winding HMC (wHMC), and it
shows an improved behaviour of the autocorrelation time towards the continuum limit. We find
excellent agreement between the wHMC estimates of the plaquette and topological susceptibility
and the analytical predictions in the U(1) pure gauge theory, which are known even at finite 3. We
also study the expectation values in fixed topological sectors using both HMC and wHMC, with
and without fermions. Even when topology is frozen in HMC-—leading to significant deviations in
topological as well as non-topological quantities—the two algorithms agree on the fixed-topology
averages. Finally, we briefly compare the wHMC algorithm results to those obtained with master-

field simulations of size I ~ 8 x 10°,
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Topology freezing
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*Topological charge freezes going to the continuum
|:> Long autocorrelation times
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Topology freezing

ﬁ HMC proposes configurations with the same ()
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Critical Slowing Down

ﬁ HMC proposes configurations with the same ()

|1> Can we build an algorithm that proposes
Q— Q+t17
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The model

ﬁ We worked in U(1) gauge theory in 2D for N, = 0 and N, = 2
Il> used as benchmark model in Machine Learning, Tensor Networks...
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Hybrid Monte Carlo

4 HMC is a particular case of a Metropolis—Hastings algorithm

q(|o)
p(x)
Lo T :
Target distribution Proposal distribution
p(x) = e™® q(x'|x) — Hamilton egs.
Accept-reject step
. p(U’)
Dace(U'|U —mln{l }

with p(U) = e 51V
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Winding transformation
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Iy { ), 1 { . . \ . boundary of the blue region
SRNIP PP N\ After this, the topological charge
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| Changing plaquettes ) Sy

Similar to an old attempt under the name of instanton hit
F. Fucito and S. Solomon, Phys. Lett. B 134, 230 (1984)
(see also previous talk by Eichhorn)
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winding HMC

f{ Define the winding-step proposal distribution: ¢U'|U) = %6(U’ — U + %5(U’ —U?)

* Combine HMC and winding transformations |:> wHMC |~ 5isties DB

- Ergodic

wHMC step
]

winding
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winding HMC

* Define the winding-step proposal distribution: ¢U'|U) = %6(U’ — U + %5(U’ —U?)

* Combine HMC and winding transformations |:> wHMC | st DB

- Ergodic

wHMC step
]

winding
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N, = 0 results

f

f=845 —— wHMC  —— HMC
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ﬁ In the pure gauge theory, wHMC samples correctly at 8 values for which HMC is frozen

wHMC should lead to correct results

:> HMC should lead to incorrect results
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N.= 0 results

f
1.0- — .
Analytic
g=11.25 e wHMC
0.8 1 HMC
A
2@ g6
Z
0.4
0.2
0.0 —

6 -5 -4 -3 -2-10 1 2 3 4 5 6

Q

* In the pure gauge theory, wHMC samples correctly at [ values for which HMC is frozen

wHMC should lead to correct results

:> HMC should lead to incorrect results
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N.= 0 results

f

G. Kovacs et al., Nucl.Phys. B454 (1995) 45-58 hep-th /9505005
We can check the results of ) ) (1995) p-th/

C. Bonati and P. Rossi, Phys. Rev. D 99, 054503 (2019) 1901.09830

both algorithms for all 3 C. Bonati and P. Rossi, Phys. Rev. D 100, 054502 (2019) 1908.07476
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wHMC agrees with analytical results at all 3

* HMC gets biased approaching the continuum
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N.= 0 results
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wHMC agrees with analytical results at all 3

* HMC gets biased approaching the continuum
E> even for non-topological observables!
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— 0 results: fixed topology

f

But does HMC sample correctly observables at fixed topological sectors?

8

¥ HMC
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% ¢ wHMC
. 41
(AP)t
op

arXiv: 2106.14234 David Albandea




— 0 results: fixed topology

f

But does HMC sample correctly observables at fixed topological sectors?
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* HMC gets wrong the final value of the plaquette
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— 0 results: fixed topology

f

But does HMC sample correctly observables at fixed topological sectors?

¥ HMC
61 8 =11.25 Master field
% ¢  wHMC
. 41
(AP)in
op

* HMC gets wrong the final value of the plaquette

but samples correctly the sector () = 0
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— 0 results: scaling with a

f
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* HMC autocorrelation increases exponentially

wHMC increases only polynomially
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* There is an optimal size for the winding

* Acceptance is much lower

Il> perform several windings per step
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|:> Balance # of inversions in HMC and windings

.51 ——— (Gaussian fit
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0.4 At equivalent computational costs,
wHMUC is still able to sample all relevant
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Pion Mass discrepancy between wHMC and HMC
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N. = 2 results
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N. = 2 results

f

Pion Mass discrepancy between wHMC and HMC
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* HMC has 8¢ discrepancy with wHMC in the topological average
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N. = 2 results

f

Pion Mass discrepancy between wHMC and HMC
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* HMC has 8¢ discrepancy with wHMC in the topological average

but samples correctly () = 0 and () = 1
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N. = 2 results

f

—— Continuum — Fit - Quenched
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Good agreement with chiral and quenched limits
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N. = 2 results
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— 2 results: scaling with a

f

1Y & wHMC .}
¢  HMC

reTee 104

104 %

At equivalent computational costs, topology freezing
is improved with wHMC with respect to HMC
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Summary & Outlook

* We have built an algorithm which improves topological
freezing for a U(1) gauge theory with N ;=0and N,= 2

We have seen that HMC is biased in topological
* (susceptibility) and non-topological (plaquette, pion
mass) observables close to the continuum limit

* We have checked that HMC samples correctly at fixed
topology despite being frozen

ﬁ We are exploring the implementation of the algorithm
for a SU(2) gauge theory in 4D
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Can wHMC be generalized to 4D?

1950 2000 2050 2100 2150 2200 2250 2300 2350
AS

SU(2) gauge theory

ﬁ Tried a naive generalization, but acceptances are very low
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M. Liischer, EPJ Web Conf. 175, 01002 (2018), 1707.09758.

* Perform spacetime averages in huge lattices instead of Monte-Carlo-time averages

* Does not suffer from topology freezing

* Can extract observables from one single configuration, but hard to thermalize!
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Equivariant flow-based sampling in U(1)
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(a) Normalizing flow between prior and output distributions

M. S. Albergo, G. Kanwar and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019), 1904.12072
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G. Kanwar et al., Phys. Rev. Lett. 125, 121601 (2020), 2003.06413
David Albandea




Lattice computations

_ /DU O[U]e=SIU |
<O> — f DUe_S[U] U : gauge links

Expectation value of O :

Usual workflow in lattice computations

S[U]

1. Interpret € as a probability distribution

2. Generate N configurations following ¢S] using Hybrid Monte Carlo (HMC)

3. Extract observables of interest by averaging over the generated configurations

(0) = + > i O{U}) + O (V%)
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