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Abstract
The tensor renormalization group is a promising numerical method used to study lattice statistical field theories. However, this approach is computationally expensive in 2+1 and 3+1 dimensions. Here we use tensor renormalization group methods to study an effective
three-dimensional Z3 model for the heavy-quark, high-temperature, strong-coupling limit of single-flavor 3+1 dimensional quantum chromodynamics. Our results are cross-checked using the worm Monte Carlo algorithm. We present the phase diagram of the model through
the measurement of the Polyakov loop, the nearest-neighbor Polyakov loop correlator, and their susceptibilities. The tensor renormalization group results are in good agreement with the literature.

Single-flavor, finite-density QCD
The action has two parts, S = Sg + Sf , with gauge action
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and fermion action
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∑
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ψ̄xMxyψy, M = 1− κat
a
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and spatial and temporal hoppings
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, Ht = eµ̃atT+

4 + e−µ̃atT−4 (3)

where

(T±ν )xy = (1± γν)Ux,±νδy,x±ν̂. (4)

β ∼ 1/g2 and κ are couplings, µ̃ is the chemical potential, a and at are the spatial
and temporal lattice spacings. The temperature is given by the inverse, physical
extent of the lattice,

T =
1

Ntat
, (5)

with (anti-)periodic boundary conditions in (time) space.

The effective action
Take the strong-coupling, high-temperature, large chemical potential, large
quark mass limit,

β � 1, Nt = 1, at� 1, µ̃� 1, κ� 1. (6)

In Sg spatial plaquettes are suppressed, and in Sf spatial hopping is suppressed. The
SU(3) group elements are replaced by elements of the center, Z3.
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P ∗xPx+ν̂ + c.c. (7)

Sf → −κ
∑
x

[
eµPx + e−µP ∗x

]
. (8)

Px ∈ Z3, which can be interpreted as a Polyakov loop. This results in an effective
action

Seff = −
∑
x

[
τ

3∑
ν=1

(P ∗xPx+ν̂ + c.c.) + (ηPx + η̄P ∗x )

]
(9)

with τ ≡ β/2at and η ≡ κeµ and η̄ = κe−µ.

The tensor network

The partition function for the effective action describing this theory of interacting
“spins” can be recast to a theory of “currents” and “charges” by Fourier expansion,
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∑
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)
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with jx =
∑3

ν=1 nx,ν−nx−ν̂,ν +mx, and ∆(3)(jx) = δjxmod3,0. A tensor network can
be built from the tensor,

T (x)
nx−1̂,1nx,1nx−2̂,2nx,2nx−3̂,3nx,3

=
√
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Bnx,1Bnx−2̂,2
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Bnx,3(τ )Vmx
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We calculate the average Polyakov loop and average nearest-neighbor correlator,
and their susceptibilities,

〈P 〉 =
1

V

∂ lnZ

∂η
, 〈E〉 = − 1

V

∂ lnZ

∂τ
(11)

χP = V (〈P 2〉 − 〈P 〉2), χE = V (〈E2〉 − 〈E〉2). (12)

Tensor methods
Using T we contract the tensor network using
the higher-order tensor renormalization group
(HOTRG). This can be done in the original HOTRG
prescription, or with additional approximations using
the triad tensor renormalization group. The T ten-
sor can be decomposed into four, three-indexed tensors
called triads,

Tijklmn =
∑
α,β,γ

AijαBαkβCβlγDγmn. (13)

The tensor network contraction with these can be done efficiently. We report results
using original HOTRG, triad HOTRG, and worm Monte Carlo.

Results
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The average nearest-neighbor
Polyakov loop correlator at κ, µ = 0.
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The average Polyakov loop at µ = 0,
κ = 2× 10−5 at V = 10243.
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The Polyakov loop at κ = 0.05, and
τ = 0.1, V = 323.
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Heat map of the Polyakov loop at κ =
0.05 using HOTRG with seven states.
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The Polyakov loop susceptibility at
κ = 0.05, and τ = 0.1, V = 323.
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Heat map of the Polyakov loop sus-
ceptibility at κ = 0.05 using HOTRG
with seven states.


