Implementing noise reduction techniques into the OpenQ*D package

Lucius Bushnaq, Marina Marinkovic, Michael Peardon in collaboration with RC* collaboration

Trinity College Dublin¹²

July 30, 2021

¹This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942

²We acknowledge access to Piz Daint at the Swiss National Supercomputing Centre, Switzerland under the ETHZ's share with the project IDs go22 and go24.

Vector correlator

Noise and Low mode averaging

- High Gauge noise at long distance, scaling $\propto e^{2(m_
 ho-m_\pi)t}$
- Stochastic noise from random sources
- Stochastic noise scaling improvements: One-end trick, dilution schemes, low-mode averaging

Low mode averaging:

Calculate N lowest eigenvectors of the Dirac operator

Split quark propagators into low and high eigenmode contributions $\psi=\psi_{\textit{low}}+\psi_{\textit{high}}$

Calculate $\psi_{\textit{low}}$ using the eigenvectors, $\psi_{\textit{high}}$ stochastically

[DeGrand and Schaefer, 2004]

Idea: Low-mode averaging, but cheaper

Instead of Dirac operator, use the gauge-inavariant spatial Laplacian

$$\bigtriangledown_{mn}^{2}(t) = -6\delta_{mn} + \sum_{j=1}^{3} \left(U_{j}(m,t)\delta_{m+\hat{j},n} + U_{j}^{\dagger}(m-\hat{j},t)\delta_{m-\hat{j},n} \right)$$
(3)

Use lowest N eigenmodes to form distillation projector

$$\Box(t) = V(t)V^{\dagger}(t) = \sum_{k=1}^{N} v^{(k)}(t)v^{(k)\dagger}(t)$$
(4)

[Peardon et al., 2009]

Insert $1 - \Box(t) + \Box(t)$ into correlator C at source and sink. Then:

$$C(t) = C_{dist}(t) + C_{rest}(t) + C_{cross}(t)$$
(5)

Number of required Dirac solves is now $N_{dist} + 2N_s$

Implemented for the connected contribution in OpenQ*D, Laplacian solved with Primme(Preconditioned Iterative MultiMethod Eigensolver) [Wu et al., 2016]

Tests in OpenQ*D on 30 configurations from two CLS data sets with two flavours of dynamical O(a) improved Wilson fermions. Computed with periodic boundary conditions and stochastic wall sources

[Campos et al., 2020]

Config	V	β	κ	$m_{\pi}L$	<i>a</i> [fm]	m_{π} [MeV]		
E5	64×32^3	5.30	0.13625	4.7	0.0658(7)(7)	437		
A5	64×32^3	5.20	0.13594	4.0	0.0755(9)(7)	331		
[Della Morte et al., 2017] [Fritzsch et al., 2012]								

Vector-Vector correlator with distillation

E5 vector correlator, 24 sources

Vector-Vector correlator with distillation

E5 vector correlator by parts, 24 sources

Vector-Vector correlator with distillation

E5 vector correlator precision, 24 sources

Distilled sub-space contribution

E5 vector correlator C_{dist} subspace, 24 sources

N _{dist}	C _{dist} Dirac solver	Lap. solver	Lap. solver Orthogonalisation	Lap. solver MatVec
20x4	1.18e+02s	4.63e+01s	3.51e+00 s	3.11e+01 s
40×4	2.53e+02s	$1.04\mathrm{e}{+02}\mathrm{s}$	$1.08\mathrm{e}{+01}\mathrm{s}$	6.87e+01 s
80 <i>x</i> 4	4.84e+02s	2.43e+02s	4.18e+01 s	$1.52\mathrm{e}{+02}\mathrm{s}$
160 <i>x</i> 4	$1.12\mathrm{e}{+03s}$	7.77e+02s	2.51e+02s	3.46e+02s
320 <i>x</i> 4	$2.82\mathrm{e}{+03s}$	$2.14\mathrm{e}{+03s}$	$1.14\mathrm{e}{+03\mathrm{s}}$	7.40e+02s

Distilled sub-space A5

A5 vector correlator C_{dist} subspace

Idea: Use gauge-covariant Laplacian modes instead of Low mode averaging with Dirac modes

- The contribution of the eigenspace to the vector-vector correlator grows too slowly with the number of eigenmodes
- Also tested with the pseudoscalar, similar result

Stick with Low mode averaging

Backup: distillation subspace gauge noise

E5 vector correlator C_{dist} noise scaling

Backup: pseudoscalar

A5 pseudoscalar C_{dist} noise scaling

Backup: Insertion

$$\begin{split} \langle \overline{\psi}_{s}^{A}(t) \gamma_{\mu} \psi_{s}^{B}(t) \overline{\psi}_{s}^{B}(t') \gamma_{\nu} \psi_{s}^{A}(t') \rangle_{F} \\ &= \langle \overline{\psi}_{s}^{A}(t) \gamma_{\mu} \left(1 - \Box(t) + \Box(t) \right) \psi_{s}^{B}(t) \overline{\psi}_{s}^{B}(t') \gamma_{\nu} \left(1 - \Box(t') + \Box(t') \right) \psi_{s}^{A}(t') \rangle_{F} \\ &= \langle \overline{\psi}_{s}^{A}(t) \gamma_{\mu} \left(1 - \Box(t) \right) \psi_{s}^{B}(t) \overline{\psi}_{s}^{B}(t') \gamma_{\nu} \left(1 - \Box(t') \right) \psi_{s}^{A}(t') \rangle_{F} \\ &+ 2 \langle \overline{\psi}_{s}^{A}(t) \gamma_{\mu} \Box(t) \psi_{s}^{B}(t) \overline{\psi}_{s}^{B}(t') \gamma_{\nu} \left(1 - \Box(t') \right) \psi_{s}^{A}(t') \rangle_{F} \\ &+ \langle \overline{\psi}_{s}^{A}(t) \gamma_{\mu} \Box(t) \psi_{s}^{B}(t) \overline{\psi}_{s}^{B}(t') \gamma_{\nu} \Box(t') \psi_{s}^{A}(t') \rangle_{F} \\ &= \frac{1}{N_{r}} \mathrm{tr}[\gamma_{5} \gamma_{\mu} \left(1 - \Box(t) \right) D^{-1}(t, t') \eta^{(r)}(t') \\ &\qquad \eta^{\dagger^{(r)}}(t') \gamma_{\nu} \gamma_{5} \left(1 - \Box(t') \right) D^{-1^{\dagger}}(t', t)] \\ &+ \frac{2}{N_{r}} \mathrm{tr}[\gamma_{5} \gamma_{\mu} \Box(t) D^{-1}(t, t') \eta^{(r)}(t') \eta^{\dagger^{(r)}}(t') \gamma_{\nu} \gamma_{5} \left(1 - \Box(t') \right) D^{-1^{\dagger}}(t', t)] \\ &+ \mathrm{tr}[\gamma_{5} \gamma_{\mu} V^{\dagger}(t) D^{-1}(t, t') V(t') \gamma_{\nu} \gamma_{5} V^{\dagger}(t') D^{-1^{\dagger}}(t', t) V(t)] \end{split}$$

 Campos, I., Fritzsch, P., Hansen, M., Marinkovic, M. K., Patella, A., Ramos, A., and Tantalo, N. (2020).
 openQ*D code: a versatile tool for QCD+QED simulations.
 Eur. Phys. J. C, 80(3):195.

DeGrand, T. and Schaefer, S. (2004).
 Improving meson two-point functions in lattice qcd.
 Computer Physics Communications, 159(3):185–191.

Della Morte, Francis, A., Gülpers, V., Herdoíza, G., von Hippel, G., Horch, H., Jäger, B., Meyer, H., Nyffeler, A., and Wittig, H. (2017). The hadronic vacuum polarization contribution to the muon g 2 from lattice qcd.

Journal of High Energy Physics, 2017(10).

 Fritzsch, P., Knechtli, F., Leder, B., Marinkovic, M., Schaefer, S., Sommer, R., and Virotta, F. (2012).
 The strange quark mass and lambda parameter of two flavor qcd. *Nuclear Physics B*, 865(3):397–429.

Quantum chromodynamics on the lattice, volume 788. Springer, Berlin.

Peardon, M., Bulava, J., Foley, J., Morningstar, C., Dudek, J., Edwards, R. G., Joó, B., Lin, H.-W., Richards, D. G., and Juge, K. J. (2009).

Novel quark-field creation operator construction for hadronic physics in lattice qcd.

Physical Review D, 80(5).

Wu, L., Romero, E., and Stathopoulos, A. (2016). Primme_svds: A high-performance preconditioned SVD solver for accurate large-scale computations. *CoRR*, abs/1607.01404.