Finite volume corrections to forward Compton scattering off the nucleon

Jonathan Lozano de la Parra

University of Bonn

lozano@hiskp.uni-bonn.de

Talk based on: Phys. Rev. D 103, 034507 In collaboration with: Agadjanov, Gegelia, Meißner and Rusetsky

July 27, 2021

Nucleon Forward Compton Scattering

The doubly-virtual forward Compton scattering.

• Spin-averaged Compton tensor:

$$
T^{\mu\nu} = (q^{\mu}q^{\nu} - g^{\mu\nu}q^2)T_1(\nu, q^2) + \frac{1}{m^2}\{(p^{\mu}q^{\nu} + p^{\nu}q^{\mu})p \cdot q - g^{\mu\nu}(p \cdot q)^2 - p^{\mu}p^{\nu}q^2\}T_2(\nu, q^2)
$$

Two scalar amplitudes involved: $T_1(\nu, q^2)$ and $T_2(\nu, q^2)$, $\nu \equiv p \cdot q/m$

Nucleon Forward Compton Scattering

The doubly-virtual forward Compton scattering.

• Spin-averaged Compton tensor:

$$
T^{\mu\nu} = (q^{\mu}q^{\nu} - g^{\mu\nu}q^2) T_1(\nu, q^2)
$$

+
$$
\frac{1}{m^2} \{ (p^{\mu}q^{\nu} + p^{\nu}q^{\mu})p \cdot q - g^{\mu\nu}(p \cdot q)^2 - p^{\mu}p^{\nu}q^2 \} T_2(\nu, q^2)
$$

Two scalar amplitudes involved: $T_1(\nu, q^2)$ and $T_2(\nu, q^2)$, $\nu \equiv p \cdot q/m$ • the proton-neutron mass difference

Nucleon Forward Compton Scattering

The doubly-virtual forward Compton scattering.

• Spin-averaged Compton tensor:

$$
T^{\mu\nu} = (q^{\mu}q^{\nu} - g^{\mu\nu}q^2) T_1(\nu, q^2)
$$

+
$$
\frac{1}{m^2} \{ (p^{\mu}q^{\nu} + p^{\nu}q^{\mu})p \cdot q - g^{\mu\nu}(p \cdot q)^2 - p^{\mu}p^{\nu}q^2 \} T_2(\nu, q^2)
$$

- Two scalar amplitudes involved: $T_1(\nu, q^2)$ and $T_2(\nu, q^2)$, $\nu \equiv p \cdot q/m$
	- the proton-neutron mass difference
	- Lamb shift in the muonic hydrogen

Jonathan Lozano de la Parra [FV corrections to VVCS off the nucleon](#page-0-0) July 27, 2021 2/11

Lamb Shift: Polarizability Contribution

Two-photon exchange of lepton-nucleon scattering.

• Higher-order proton structure corrections to the Lamb shift in muonic hydrogen: Carlson, Vanderhaeghen 2011 $\Delta E_{nS} = \frac{\alpha_{em} \phi_n^2}{4 \pi^3 m}$ $4\pi^3 m$ 1 i $\int d^3q \int^{\infty}$ $\int_0^\infty d\nu \frac{\left(q^2-2\nu^2\right) T_1(\nu,q^2)-\left(q^2+\nu^2\right) T_2(\nu,q^2)}{q^4 [\left(q^2/4 m^2_{\rm f}\right)-\nu^2]}$ $q^4[(q^2/4m_l^2)-\nu^2]$.

Muonic Lamb-shift \rightarrow T_1 , T_2 $(q^2 < 0)$

Lamb Shift: Polarizability Contribution

Two-photon exchange of lepton-nucleon scattering.

• Higher-order proton structure corrections to the Lamb shift in muonic hydrogen: Carlson, Vanderhaeghen 2011 $\Delta E_{nS} = \frac{\alpha_{em} \phi_n^2}{4 \pi^3 m}$ $4\pi^3 m$ 1 i $\int d^3q \int^{\infty}$ $\int_0^\infty d\nu \frac{\left(q^2-2\nu^2\right) T_1(\nu,q^2)-\left(q^2+\nu^2\right) T_2(\nu,q^2)}{q^4 [\left(q^2/4 m^2_{\rm f}\right)-\nu^2]}$ $q^4[(q^2/4m_l^2)-\nu^2]$.

Muonic Lamb-shift \rightarrow T_1 , T_2 (q^2 < 0)

The $T_1(\nu,q^2)$ can be evaluated using the <u>once-subtracted</u> dispersion integral

Lamb Shift: Polarizability Contribution

Two-photon exchange of lepton-nucleon scattering.

• Higher-order proton structure corrections to the Lamb shift in muonic hydrogen: Carlson, Vanderhaeghen 2011 $\frac{\alpha_{em}\phi_n^2}{4} \frac{1}{\rho^3} \int d^3q \int^{\infty} d\nu \frac{(q^2-2\nu^2)T_1(\nu, q^2)-(q^2+\nu^2)T_2(\nu, q^2)}{q^3}$

$$
\Delta E_{nS} = \frac{\alpha_{em} \varphi_n}{4\pi^3 m_l} \frac{1}{i} \int d^3q \int_0^d d\nu \frac{(q'-2\nu')\,i\,1(\nu,q') - (q'+\nu')\,i\,2(\nu,q')}{q^4[(q^2/4m_l^2)-\nu^2]}.
$$

Muonic Lamb-shift \rightarrow T_1 , T_2 (q^2 < 0)

The $T_1(\nu,q^2)$ can be evaluated using the <u>once-subtracted</u> dispersion integral A problem: $S_1(q^2) \equiv T_1(0,q^2)$ is not fixed by expe[rim](#page-5-0)[ent](#page-7-0)[s.](#page-3-0)

Determination of S_1

Reggeon dominance hypothesis. Gasser et al. 2015.

- Chiral effective field theories J. Alarcón et al. 2014
- Phenomenological approaches Walker-Loud et al. 2012 Erben et al. 2014
- **Reggeon dominance** Gasser et al. 2015

化重 医牙

Determination of S_1

Reggeon dominance hypothesis. Gasser et al. 2015.

- Chiral effective field theories J. Alarcón et al. 2014
- Phenomenological approaches Walker-Loud et al. 2012 Erben et al. 2014
- **Reggeon dominance** Gasser et al. 2015
- Lattice QCD: model-independent

不重 医牙

- Using lattice QCD, the Compton tensor can be studied
- Study the two-point function in an external em. field

• Uniform electromagnetic field \rightarrow polarizabilities Detmold et al. 2006

Nucleon in a Periodic Magnetic Field

- Static magnetic field \rightarrow stable energy levels.
- The energy shift of a nucleon on the lattice, using the external field method, is

Agadjanov, Rusetsky and Meißner 2017, Schierholz et al. 2017

$$
\delta E = \frac{e^2 B^2}{4m} S_1(-\omega^2) + O(B^3).
$$

 $\mathbf{B} = (0, 0, -eB\cos(\omega \mathbf{n} \mathbf{x}))$, $\mathbf{n} = (0, 1, 0)$ and $\omega = \frac{2\pi n}{L}$

Nucleon in a Periodic Magnetic Field

- Static magnetic field \rightarrow stable energy levels.
- The energy shift of a nucleon on the lattice, using the external field method, is

Agadjanov, Rusetsky and Meißner 2017, Schierholz et al. 2017

$$
\delta E = \frac{e^2 B^2}{4m} S_1(-\omega^2) + O(B^3).
$$

 $\mathbf{B} = (0, 0, -eB\cos(\omega \mathbf{n} \mathbf{x}))$, $\mathbf{n} = (0, 1, 0)$ and $\omega = \frac{2\pi n}{L}$

More recently, this result was rederived in a finite volume Agadjanov, Rusetsky and Meißner 2018

$$
\delta E = -\frac{1}{4m} \left(\frac{eB}{\omega}\right)^2 T^{11}(p,q) + O(B^3).
$$

• Kinematics: $p = (m, \vec{0})$, $q = (0, 0, \omega, 0)$.

Nucleon in a Periodic Magnetic Field

- Static magnetic field \rightarrow stable energy levels.
- The energy shift of a nucleon on the lattice, using the external field method, is

Agadjanov, Rusetsky and Meißner 2017, Schierholz et al. 2017

$$
\delta E = \frac{e^2 B^2}{4m} S_1(-\omega^2) + O(B^3).
$$

 $\mathbf{B} = (0, 0, -eB\cos(\omega \mathbf{n} \mathbf{x}))$, $\mathbf{n} = (0, 1, 0)$ and $\omega = \frac{2\pi n}{L}$

More recently, this result was rederived in a finite volume Agadjanov, Rusetsky and Meißner 2018

$$
\delta E = -\frac{1}{4m} \left(\frac{eB}{\omega}\right)^2 T^{11}(p,q) + O(B^3).
$$

• Kinematics: $p = (m, \vec{0}), q = (0, 0, \omega, 0)$.

Work left to do: Subtract finite-volume cor[rec](#page-11-0)[tio](#page-13-0)[n](#page-9-0)[t](#page-12-0)[o](#page-13-0) $\mathcal{T}_{\!=\!+\!-\!-\!-\!}^{11}\rightarrow$ $\mathcal{T}_{\!=\!+\!-\!-\!-\!}^{11}\rightarrow$ $\mathcal{T}_{\!=\!+\!-\!-\!-\!}^{11}\rightarrow$ $\mathcal{T}_{\!=\!+\!-\!-\!-\!}^{11}\rightarrow$ $\mathcal{T}_{\!=\!+\!-\!-\!-\!}^{11}\rightarrow$ [S](#page-26-0)[1](#page-0-0)[.](#page-26-0)

Finite Volume Artifacts

- **•** Lattice simulations are done in a finite-volume \rightarrow finite-volume effects.
- Two kinds of FVE:
	- Type 1: Polarization Effects: exponential
	- Type 2: Multi-hadron intermediate states: power law

In this work, we deal with FVE of the first type.

- **•** Lattice simulations are done in a finite-volume \rightarrow finite-volume effects.
- **•** Two kinds of FVE:
	- Type 1: Polarization Effects: exponential
	- Type 2: Multi-hadron intermediate states: power law

In this work, we deal with FVE of the first type.

- How to estimate them? \rightarrow baryon ChPT in a finite-volume
- **•** The Lagrangians are the same in the infinite and in a finite volume
- The 3-momentum integrals changed by sums:

$$
\int \frac{d^3 \mathbf{k}}{(2\pi)^3} \to \frac{1}{L^3} \sum_{\mathbf{k}}, \qquad \mathbf{k} = \frac{2\pi}{L} \mathbf{n}, \qquad \mathbf{n} \in \mathbb{Z}^3
$$

Results in the infinite-volume

Model A: $\text{S}^{\text{inel}}(0) = (0.8 \pm 2.7)$ GeV $^{-2} \longrightarrow$ Purely experimental

- Model B: $S^{\text{inel}}(0) = (-0.7 \pm 1.0)$ GeV $^{-2} \longrightarrow$ Experimental + Reggeon
- Mod[e](#page-14-0)[l](#page-16-0)C: S $^{\rm inel}(0)=(-1.2\pm0.5)$ $^{\rm inel}(0)=(-1.2\pm0.5)$ $^{\rm inel}(0)=(-1.2\pm0.5)$ GeV $^{-2}$ —> Ex[pe](#page-14-0)rime[nta](#page-15-0)l $+$ [La](#page-26-0)[t](#page-0-0)[ti](#page-1-0)[ce](#page-26-0)

Results in the infinite-volume

Model A: $\text{S}^{\text{inel}}(0) = (0.8 \pm 2.7)$ GeV $^{-2} \longrightarrow$ Purely experimental

- Model B: $S^{\text{inel}}(0) = (-0.7 \pm 1.0)$ GeV $^{-2} \longrightarrow$ Experimental + Reggeon
- Mod[e](#page-15-0)[l](#page-17-0)C: S $^{\rm inel}(0)=(-1.2\pm0.5)$ $^{\rm inel}(0)=(-1.2\pm0.5)$ $^{\rm inel}(0)=(-1.2\pm0.5)$ GeV $^{-2}$ —> Ex[pe](#page-15-0)rime[nta](#page-16-0)l $+$ [La](#page-26-0)[t](#page-0-0)[ti](#page-1-0)[ce](#page-26-0)

 QQ

FV Correction: Neutron

$$
\Delta\equiv \tfrac{\mathcal{T}^{11}_L(\rho,q)-\mathcal{T}^{11}(\rho,q)}{\mathcal{T}^{11}(\rho,q)}
$$

€⊡

FV Correction: Neutron

$$
\Delta\equiv \tfrac{\mathcal{T}^{11}_L(\rho,q)-\mathcal{T}^{11}(\rho,q)}{\mathcal{T}^{11}(\rho,q)}
$$

 $2Q$

FV Correction: Neutron

$$
\Delta\equiv \tfrac{\mathcal{T}^{11}_L(\rho,q)-\mathcal{T}^{11}(\rho,q)}{\mathcal{T}^{11}(\rho,q)}
$$

FV Correction: Proton

$$
\Delta\equiv \tfrac{\mathcal{T}^{11}_L(\rho,q)-\mathcal{T}^{11}(\rho,q)}{\mathcal{T}^{11}(\rho,q)}
$$

←□

Þ

FV Correction: Proton

$$
\Delta\equiv \tfrac{\mathcal{T}^{11}_L(\rho,q)-\mathcal{T}^{11}(\rho,q)}{\mathcal{T}^{11}(\rho,q)}
$$

←□

Þ

FV Correction: Proton

$$
\Delta\equiv \tfrac{\mathcal{T}^{11}_L(\rho,q)-\mathcal{T}^{11}(\rho,q)}{\mathcal{T}^{11}(\rho,q)}
$$

←□

Þ

• A finite-volume calculation of the forward Compton scattering tensor was performed in the framework of ChPT to order $\mathcal{O}(\rho^4)$.

- A finite-volume calculation of the forward Compton scattering tensor was performed in the framework of ChPT to order $\mathcal{O}(\rho^4)$.
- For the physical pion mass, and for $M_{\pi}L \simeq 4$, Δ is not bigger than 3% for both proton and neutron.

- A finite-volume calculation of the forward Compton scattering tensor was performed in the framework of ChPT to order $\mathcal{O}(\rho^4)$.
- For the physical pion mass, and for $M_{\pi}L \simeq 4$, Δ is not bigger than 3% for both proton and neutron.
- Low energy constants at $O(\rho^4)$, although not accurately known, do not pose a problem in the convergence of our results.

- A finite-volume calculation of the forward Compton scattering tensor was performed in the framework of ChPT to order $\mathcal{O}(\rho^4)$.
- For the physical pion mass, and for $M_{\pi}L \simeq 4$, Δ is not bigger than 3% for both proton and neutron.
- Low energy constants at $O(\rho^4)$, although not accurately known, do not pose a problem in the convergence of our results.
- The extraction of the infinite-volume S_1 with good accuracy is possible for reasonable large lattices.