Flavor decomposition for the proton unpolarized, helicity and transversity parton distribution functions

[arXiv:2106.16065]

Floriano Manigrasso

University of Cyprus University of Rome "Tor Vergata" Humboldt University of Berlin

In collaboration with: Constantia Alexandrou, Martha Constantinou, Kyriakos Hadjiyiannakou, Karl Jansen

The 38th International Symposium on Lattice Field Theory July 26-30, 2021

Overview

Motivation:

- Parton distribution functions play a key role in the on-going experimental program of major facilities BNL, CERN, DESY, Fermilab, JLab and SLAC;
- Accessed experimentally in deep-inelastic scattering (DIS), semi-inclusive DIS, Drell-Yan, and proton-proton scattering processes;
- Strange PDFs resulting from phenomenological analysis show large uncertainties;

Overview

Motivation:

- Parton distribution functions play a key role in the on-going experimental program of major facilities BNL, CERN, DESY, Fermilab, JLab and SLAC;
- Accessed experimentally in deep-inelastic scattering (DIS), semi-inclusive DIS, Drell-Yan, and proton-proton scattering processes;
- Strange PDFs resulting from phenomenological analysis show large uncertainties;

Overview

Motivation:

- Parton distribution functions play a key role in the on-going experimental program of major facilities BNL, CERN, DESY, Fermilab, JLab and SLAC;
- Accessed experimentally in deep-inelastic scattering (DIS), semi-inclusive DIS, Drell-Yan, and proton-proton scattering processes;
- Strange PDFs resulting from phenomenological analysis show large uncertainties;

Methodology:

- Results from lattice QCD simulations on the x-dependence of PDFs are very promising;
- We presented the first calculation of the flavor decomposition of the helicity PDFs;

[C. Alexandrou et al., Phys.Rev.Lett. 126 (2021) 10, 102003]

Table of contents

1 Theoretical aspects

2 Lattice techniques and numerical setup

3 Results

Quasi-PDF approach 1/2

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1539]

The quasi-PDFs are defined in momentum space

$$\widetilde{q}(x,\mu,P) = 2P_3 \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{-ixP_3 z} \mathcal{M}^R(z,P_3),$$

Quasi-PDF approach 1/2

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1539]

The quasi-PDFs are defined in momentum space

$$\widetilde{q}(x,\mu,P) = 2P_3 \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{-ixP_3 z} \mathcal{M}^R(z,P_3),$$

Fourier transform of hadronic matrix elements

$$\mathcal{M}^{\mathsf{R}}(z, \mathcal{P}_{3}, \mu) \equiv Z(z, \mu) \mathcal{M}(z, \mathcal{P}_{3}),$$

$$\mathcal{M}(z, P_3) \equiv \langle \mathcal{N}(P) | \overline{\psi}(z) \, \Gamma\{\mathbf{1}, \tau^3\} \, \mathcal{W}(0, z) \psi(0) \, | \mathcal{N}(P) \rangle, \, \psi = \begin{pmatrix} u \\ d \end{pmatrix} \text{ or } \psi = s$$

Quasi-PDF approach 1/2

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1539]

The quasi-PDFs are defined in momentum space

$$\widetilde{q}(x,\mu,P) = 2P_3 \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{-ixP_3 z} \mathcal{M}^R(z,P_3),$$

Fourier transform of hadronic matrix elements

$$\mathcal{M}^{\mathsf{R}}(z, \mathcal{P}_{3}, \mu) \equiv Z(z, \mu) \mathcal{M}(z, \mathcal{P}_{3}),$$

$$\mathcal{M}(z, P_3) \equiv \langle N(P) | \overline{\psi}(z) \, \Gamma\{\mathbf{1}, \tau^3\} W(0, z) \psi(0) \, | N(P) \rangle, \, \psi = \begin{pmatrix} u \\ d \end{pmatrix} \text{ or } \psi = s$$

Disconnected contributions much more difficult and expensive to compute! require the use of appropriate stochastic and gauge-noise reduction techniques

Floriano Manigrasso

Quasi-PDF approach 2/2

Evaluation of the renormalization functions $Z(z,\mu)$ in the intermediate RI – MOM scheme at μ_0 and conversion to MMS at μ

[C. Alexandrou Phys. Rev.D99, 114504 (2019), 1902.00587]

Quasi-PDFs differ from light-cone PDFs by $\mathcal{O}(\Lambda_{QCD}^2/P_3^2, m_N^2/P_3^2)$. This difference can be evaluated in continuum perturbation theory within Large Momentum Effective Theory (LaMET)

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} C\left(\xi, \frac{\mu}{xP_3}\right) \widetilde{q}\left(\frac{x}{\xi}, \mu, P_3\right)$$

we employ the one loop matching procedure for the non-singlet case

Quasi-PDF approach 2/2

Evaluation of the renormalization functions $Z(z,\mu)$ in the intermediate RI – MOM scheme at μ_0 and conversion to MMS at μ

[C. Alexandrou Phys. Rev.D99, 114504 (2019), 1902.00587]

Quasi-PDFs differ from light-cone PDFs by $\mathcal{O}(\Lambda_{QCD}^2/P_3^2, m_N^2/P_3^2)$. This difference can be evaluated in continuum perturbation theory within Large Momentum Effective Theory (LaMET)

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} C\left(\xi, \frac{\mu}{xP_3}\right) \widetilde{q}\left(\frac{x}{\xi}, \mu, P_3\right)$$

we employ the one loop matching procedure for the non-singlet case

Quasi-PDF approach 2/2

Evaluation of the renormalization functions $Z(z,\mu)$ in the intermediate RI – MOM scheme at μ_0 and conversion to MMS at μ

[C. Alexandrou Phys. Rev.D99, 114504 (2019), 1902.00587]

Quasi-PDFs differ from light-cone PDFs by $\mathcal{O}(\Lambda_{QCD}^2/P_3^2, m_N^2/P_3^2)$. This difference can be evaluated in continuum perturbation theory within Large Momentum Effective Theory (LaMET)

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} C\left(\xi, \frac{\mu}{xP_3}\right) \widetilde{q}\left(\frac{x}{\xi}, \mu, P_3\right)$$

we employ the one loop matching procedure for the non-singlet case

■ Last step consists of applying the Nucleon Mass Corrections (NMCs) to correct for $m_N/P_3 \neq 0$ in a finite momentum frame

[J.W. Chen et al., Nucl.Phys. B911 (2016) 246-273, arXiv:1603.06664 [hep-ph]]

Table of contents

1 Theoretical aspects

2 Lattice techniques and numerical setup

3 Results

Computation of disconnected diagrams

The disconnected quark loop with Wilson line reads

$$\mathcal{L}(t_{\text{ins}}, z) = \sum_{\vec{x}_{\text{ins}}} \operatorname{Tr} \left[D_q^{-1}(x_{\text{ins}}; x_{\text{ins}} + z) \Gamma W(x_{\text{ins}}, x_{\text{ins}} + z) \right]$$

Algorithm

- we computed first $N_{ev} = 200$ eigen-pairs of the squared Dirac twisted-mass operator
- stochastic evaluation of the high-modes contribution to the all-to-all propagator
 - to reduce the contamination of the off diagonal terms up to a coloring distance 2^k (k = 3) we employ the hierarchical probing algorithm;
 - [A. Stathopoulos et al., 1302.4018]
 - in addition, we make use of the one-end trick;
 [UKQCD, M. Foster and C. Michael, Phys. Rev.D59,074503 (1999), hep-lat/9810021]
 [UKQCD, C. McNeile and C. Michael, Phys. Lett.B556,177 (2003), hep-lat/0212020]
 - fully dilute spin and color subspaces.

We have employed such methods in many recent studies:

- [C. Alexandrou et al., (2019), 1909.00485]
- [C. Alexandrou et al., (2020), 2003.08486]
- [C. Alexandrou et al., (2019) 1909.10744]
- [C. Alexandrou et al., Phys. Rev.D100, 014509(2019), 1812.10311]

Numerical setup and statistics

Gauge ensemble with $N_f = 2 + 1 + 1$ twisted mass fermions produced by the Extended Twisted Mass Collaboration

[C. Alexandrou et al., Phys. Rev.D98, 054518 (2018),1807.00495]

$32^3 imes 64$	a=0.0938(3)(2) fm	$m_N = 1.050(8) \text{ GeV}$
<i>L</i> = 3.0 fm	m_\pipprox 260 MeV	$m_{\pi}L pprox 4.0$

Numerical setup and statistics

Gauge ensemble with $N_f = 2 + 1 + 1$ twisted mass fermions produced by the Extended Twisted Mass Collaboration

[C. Alexandrou et al., Phys. Rev.D98, 054518 (2018),1807.00495]

	I	
$32^{3} \times 64$	<i>a</i> =0.0938(3)(2) fm	$m_N = 1.050(8) \text{ GeV}$
<i>L</i> = 3.0 fm	m_\pipprox 260 MeV	$m_{\pi}L pprox 4.0$

Statistics disconnected diagrams

			Loops			Two-poi	nt functions	
<i>P</i> ₃ [GeV]	Nev	N _{conf}	N had	N _{sc}	N _{inv}	N _{srcs}	N _{dir}	N _{meas}
0.41	200	330	512	12	6144	200	6	396 · 10 ³
0.83	200	349	512	12	6144	200	6	418.8 · 10 ³
1.24	200	1103	512	12	6144	200	6	1.3236 · 10 ⁶
1.65	200	1160	512	12	6144	200	6	1.392 · 10 ⁶

Numerical setup and statistics

Gauge ensemble with $N_f = 2 + 1 + 1$ twisted mass fermions produced by the Extended Twisted Mass Collaboration

[C. Alexandrou et al., Phys. Rev.D98, 054518 (2018),1807.00495]

$32^3 imes 64$	a=0.0938(3)(2) fm	$m_N = 1.050(8) \text{ GeV}$
L = 3.0 fm	$m_{\pi}pprox$ 260 MeV	$m_{\pi}L pprox 4.0$

Statistics disconnected diagrams

			Loops			Two-poi	nt functions	
<i>P</i> ₃ [GeV]	Nev	N _{conf}	N _{had}	N _{sc}	N _{inv}	N _{srcs}	N _{dir}	N _{meas}
0.41	200	330	512	12	6144	200	6	396 · 10 ³
0.83	200	349	512	12	6144	200	6	418.8 · 10 ³
1.24	200	1103	512	12	6144	200	6	1.3236 · 10 ⁶
1.65	200	1160	512	12	6144	200	6	1.392 · 10 ⁶

Statistics connected diagrams

P_3 [GeV]	N _{conf}	$N_{\rm src}$	N _{meas}	t₅ [fm]
0.41	50	8	400	0.94
0.83	194	8	1552	1.13
1.24	709	14	9926	1.13

Floriano Manigrasso

Table of contents

1 Theoretical aspects

2 Lattice techniques and numerical setup

Strange matrix elements

Momentum dependence

Disconnected isoscalar matrix elements

Momentum dependence

Light quark distributions

Comparison with phenomenology

Floriano Manigrasso

Strange quark distributions

Comparison with phenomenology

Different systematic effects still need to be adressed:

1 pion mass [Alexandrou et al., Phys. Rev. Lett.121,112001 (2018), 1803.02685]

- 1 pion mass [Alexandrou et al., Phys. Rev. Lett.121,112001 (2018), 1803.02685]
- **2** finite P_3 and t_s
 - the signal exponentially deteriorates with P₃ and with t_s;
 - to take into account the excited stated effect $t_s \gtrsim 1 \text{ fm} \Rightarrow \text{at high } P_3$ this becomes very challenging;
 - momentum smearing effectively helps reducing the signal-to-noise ratio, but the noise still scales exponentially with P₃;

- 1 pion mass [Alexandrou et al., Phys. Rev. Lett.121,112001 (2018), 1803.02685]
- **2** finite P_3 and t_s
 - the signal exponentially deteriorates with P₃ and with t_s;
 - to take into account the excited stated effect $t_s \gtrsim 1 \text{ fm} \Rightarrow \text{at high } P_3$ this becomes very challenging;
 - momentum smearing effectively helps reducing the signal-to-noise ratio, but the noise still scales exponentially with P₃;
- cut-off effects

- 1 pion mass [Alexandrou et al., Phys. Rev. Lett.121,112001 (2018), 1803.02685]
- **2** finite P_3 and t_s
 - the signal exponentially deteriorates with P₃ and with t_s;
 - to take into account the excited stated effect $t_s \gtrsim 1 \text{ fm} \Rightarrow \text{at high } P_3$ this becomes very challenging;
 - momentum smearing effectively helps reducing the signal-to-noise ratio, but the noise still scales exponentially with P₃;
- cut-off effects
- 4 truncation of conversion between renormalization schemes and matching Two-loops matching [L.-B. Chen et al., 2020, 2005.13757, 2006.10917, 2006.14825]

- 1 pion mass [Alexandrou et al., Phys. Rev. Lett.121,112001 (2018), 1803.02685]
- **2** finite P_3 and t_s
 - the signal exponentially deteriorates with P₃ and with t_s;
 - to take into account the excited stated effect $t_s \gtrsim 1 \text{ fm} \Rightarrow \text{at high } P_3$ this becomes very challenging;
 - momentum smearing effectively helps reducing the signal-to-noise ratio, but the noise still scales exponentially with P₃;
- cut-off effects
- truncation of conversion between renormalization schemes and matching Two-loops matching [L.-B. Chen et al., 2020, 2005.13757, 2006.10917, 2006.14825]
- singlet renormalization and matching

Different systematic effects still need to be adressed:

- 1 pion mass [Alexandrou et al., Phys. Rev. Lett.121,112001 (2018), 1803.02685]
- **2** finite P_3 and t_s
 - the signal exponentially deteriorates with P₃ and with t_s;
 - to take into account the excited stated effect $t_s \gtrsim 1 \text{ fm} \Rightarrow \text{at high } P_3$ this becomes very challenging;
 - momentum smearing effectively helps reducing the signal-to-noise ratio, but the noise still scales exponentially with P₃;
- cut-off effects
- Itruncation of conversion between renormalization schemes and matching Two-loops matching [L.-B. Chen et al., 2020, 2005.13757, 2006.10917, 2006.14825]
- singlet renormalization and matching

To be addressed in the future!

Table of contents

1 Theoretical aspects

2 Lattice techniques and numerical setup

3 Results

Results obtained so far:

✓ First computation of the disconnected contributions to the isoscalar unpolarized, helicity and transversity matrix elements at $m_{\pi} \approx 260 \text{ MeV}$;

Results obtained so far:

- ✓ First computation of the disconnected contributions to the isoscalar unpolarized, helicity and transversity matrix elements at $m_{\pi} \approx 260 \text{ MeV}$;
- Renormalization and matching of the isoscalar and isovector matrix elements, allowing to compute the light quarks distributions;

Results obtained so far:

- ✓ First computation of the disconnected contributions to the isoscalar unpolarized, helicity and transversity matrix elements at $m_{\pi} \approx 260 \text{ MeV}$;
- Renormalization and matching of the isoscalar and isovector matrix elements, allowing to compute the light quarks distributions;
- Computation of the strange quark unpolarized, helicity and transversity distributions;

Results obtained so far:

- ✓ First computation of the disconnected contributions to the isoscalar unpolarized, helicity and transversity matrix elements at $m_{\pi} \approx 260 \text{ MeV}$;
- Renormalization and matching of the isoscalar and isovector matrix elements, allowing to compute the light quarks distributions;
- Computation of the strange quark unpolarized, helicity and transversity distributions;

the comparison with phenomenological data looks very promising!

Results obtained so far:

- ✓ First computation of the disconnected contributions to the isoscalar unpolarized, helicity and transversity matrix elements at $m_{\pi} \approx 260 \text{ MeV}$;
- Renormalization and matching of the isoscalar and isovector matrix elements, allowing to compute the light quarks distributions;
- Computation of the strange quark unpolarized, helicity and transversity distributions;

the comparison with phenomenological data looks very promising!

Future steps:

In depth evaluation of the systematic effects;

Results obtained so far:

- ✓ First computation of the disconnected contributions to the isoscalar unpolarized, helicity and transversity matrix elements at $m_{\pi} \approx 260 \text{ MeV}$;
- Renormalization and matching of the isoscalar and isovector matrix elements, allowing to compute the light quarks distributions;
- Computation of the strange quark unpolarized, helicity and transversity distributions;

the comparison with phenomenological data looks very promising!

Future steps:

- □ In depth evaluation of the systematic effects;
- Exploratory study of the distributions at the physical point;

Results obtained so far:

- ✓ First computation of the disconnected contributions to the isoscalar unpolarized, helicity and transversity matrix elements at $m_{\pi} \approx 260 \text{ MeV}$;
- Renormalization and matching of the isoscalar and isovector matrix elements, allowing to compute the light quarks distributions;
- Computation of the strange quark unpolarized, helicity and transversity distributions;

the comparison with phenomenological data looks very promising!

Future steps:

- In depth evaluation of the systematic effects;
- Exploratory study of the distributions at the physical point;

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 765048.