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• The quasi-PDF:


• Direct calculation of x-dependence through large-
momentum expansion:

Large-momentum effective theory (LaMET)
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f(x, μ) = ∫
∞

−∞

dy
|y |

C( x
y

,
μ

yPz ) f̃(y, Pz, μ)

• X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014); 
• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018); 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD98 (2018).
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NNPDF Collaboration, EPJ 
C77 (2017)
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly

23

xfi(x, Q2 =10 GeV2)

X. Ji, PRL 110 (2013); SCPMA57 (2014).

Precision calculation = controlled systematics.
• Lattice: excited states, a→0, physical mπ, L→∞, etc.;
• Perturbative matching (currently at NNLO) and resummation;
• Power corrections, controllable within [xmin, xmax].
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• Coordinate space:

Renormalization and factorization
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• Momentum space/x-space:

 matrix elementsMS

Other schemes: 
ZX(z, μR, a)

 quasi-PDF:MS

 PDF:MS

Quasi-PDF in other schemes

Rigorously 
proven 

factoriza4on

FT

FT

No IR logs of z or 
higher-twist effects 

Perturba4ve 
conversion

IR logs of z and 
higher-twist effects 

Nonperturba4ve 
conversion

• Ra:o schemes 
• RI/MOM

Hybrid scheme

Hybrid scheme 
✔

• Ra:o schemes 
• RI/MOM 

     ?
No extra higher-

twist effects
Extra higher-twist 

effects
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Hybrid renormalization scheme
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See X. Ji, YZ, et al., NPB 964 
(2021) and references therein.

h̃(z, Pz)

zzS zL

RI/MOM or any 
ratio scheme:

Cancel discretization 
effects

a ≪ zS ≪ Λ−1
QCD

A minimal subtraction:
• Wilson-line mass subtraction

• Solve for Zhybrid using 
continuity condition

OΓ
R(z, μR) = Zhybrid(a, μR)e−δm|z|OΓ

B(z, a)

Confinement 
region,
Physical 

extrapolation

zL ∼ Λ−1
QCD

OΓ
B(z, a) = e−δm(a)|z| ZO(a, μ)OΓ

R(z, μ)
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• Wilson-clover fermion on 2+1 flavor HISQ configurations.

Lattice calculation
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3

ensemble mqa m⇡Lt nz z range #cfgs (#ex,#sl)

a, Lt ⇥ L3

a = 0.06 fm, -0.0388 5.85 0,1 [0,15] 100 (1, 32)

64⇥ 483 2,3,4,5 [0,8] 525 (1, 32)

[9,15] 416 (1, 32)

[16,24] 364 (1, 32)

a = 0.04 fm, -0.033 3.90 0,1 [0,32] 314 (3, 96)

64⇥ 643 2,3 [0,32] 314 (4, 128)

4,5 [0,32] 564 (4, 128)

TABLE I. Details of the measurements on two lattice ensem-
bles used in this paper. For each ensemble, we have specified
the bare Wilson fermion quark mass mqa corresponding to
a 300 MeV pion mass m⇡, the temporal extent Lt of the
lattice in m⇡ units. We specify the number of gauge config-
urations used (#cfgs) and the number of exact and sloppy
inversions per configurations (#ex,#sl) for di↵erent Wilson-
line lengths z used in three-point functions and the pion mo-
mentum Pz = 2⇡nz/(La).

tadpole improved Wilson-Clover valence quarks. That
is, we used the Wilson-Clover quark propagator in the
Wick contractions required in the computations of the
three-point and two-point functions, and the gauge links
that went into the construction of the propagator were
smoothened using 1 step of HYP smearing [57]. We set

the clover coe�cient csw = u�3/4

0
, where u0 is the average

plaquette with 1-HYP smearing; we used csw = 1.02868
and 1.0336 for a = 0.06 fm and 0.04 fm respectively.
We tuned the Wilson-Clover quark mass mqa in both
the ensembles so that the valence pion mass, m⇡, is 300
MeV. Through an initial set of tuning runs we determined
mqa = �0.0388 for a = 0.06 fm and mqa = �0.033 for
a = 0.04 fm lattices. For this pion mass, the values of
m⇡Lt on the a = 0.06 fm and 0.04 fm lattices are 5.85
and 3.89 respectively. Thus it would be more important
to take care of wrap around e↵ects in the finer lattice
and we do so in the analysis. With the usage of 1-HYP
smeared gauge links in the Wilson-Clover operator, we
did not find any exceptional configurations at both the
lattice spacings, as noted by absence of any anomaly in
the convergence of the Dirac operator inversions. We
used the a = 0.06 fm ensemble in our previous analysis
of the valence PDF of pion [42]. With this work, we have
increased the statistics used in this ensemble by more
than two times.

The most basic element of this computation is the
Wilson-Dirac quark propagator inverted over boost
smeared sources and sinks [58] as we discuss more in the
next section on two-point functions. We used the multi-
grid algorithm [59] for the Wilson-Dirac operator inver-
sions to get the quark propagators. These calculations
were performed on GPU using the QUDA suite [60–62].

We used boosted quark source [58] and sink with Gaus-
sian profile, as we discussed in detail in [42]. Instead of
using the gauge-covariant Wuppertal smearing [63] to im-

nz Pz (GeV) ⇣

a = 0.06 fm a = 0.04 fm

0 0 0 0

1 0.43 0.48 0

2 0.86 0.97 1

3 1.29 1.45 2/3

4 1.72 1.93 3/4

5 2.15 2.42 3/5

TABLE II. Table of momenta Pz in GeV at the two lattice
spacings. The values of the ⇣ used in the boosted Gaussian
sources used for each Pz is also shown.

plement the Gaussian profiled quark sources, we gauge-
fixed the configurations in the Coulomb gauge to con-
struct the sources as we found it to be computationally
less expensive. We fixed the radius of the Gaussian pro-
file on a = 0.06 fm and a = 0.04 fm ensembles to be
0.312 fm and 0.208 fm respectively. We discussed the de-
tails of tuning the Gaussian smearing parameters in the
Appendix of [42]. Using these quark propagators, we are
able to compute hadron two-point and three-point func-
tions in hadrons boosted to momentum Pz = 2⇡nz/(La).
We tabulate the details of the statistics used in the

two ensembles in Table I. We increased the statistics in
two ways (a) using statistically uncorrelated gauge field
configurations, which are labeled as #cfg in Table I, and
(b) by using All Mode Averaging (AMA) [64] on each
gauge configuration. In order to mitigate the reduction in
the signal-to-noise ratio in both the three-point and two-
point functions as one increases Pz / nz, we used more
gauge field configurations for larger nz than at smaller
ones. In a = 0.06 fm ensemble, we e↵ectively increased
the statistics 32 times by using 1 exact Dirac operator
inversion and 32 sloppy inversions in the AMA per con-
figuration. In the a = 0.04 fm ensemble, we increased the
number of exact and sloppy solves for nz = 2, 3 and more
for nz = 4, 5. We used a stopping criterion of 10�10 and
10�4 for the exact and sloppy inversions respectively.

III. ANALYSIS OF EXCITED STATES IN THE
TWO-POINT FUNCTION OF BOOSTED PION

In this section, we discuss the computation of boosted
pion correlators and the extraction of the excited state
contributions. Using a smeared (s) pion source ⇡s(P, t)

⇡s(P, t) =
X

x

ds(x, t)�5us(x, t)e
�iP.x, (3)

for pion ⇡+ that is moving with spatial momentum P =
(0, 0, Pz) along the z-direction, we computed the two-
point function of pions

Css
0

2pt
(ts;Pz) =

⌦
⇡s0(P, ts)⇡

†
s
(P, 0)

↵
. (4)

mπ = 300 MeV

483 × 64 643 × 64

• X. Gao, YZ, et al., PRD102 (2020). 
• X. Gao, YZ, et al., 2102.01101.
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• Polyakov loop


• Renormalization condition:

Wilson-line mass renormalization

6

⟨Ω | |Ω⟩
T → ∞

R ∝ exp[−V(R)T]

Vlat(r, a)
r=r0

+ 2δm(a) = 0.95/r0

δm(a) =
1
a ∑

n

cnαn
s (1/a) + δm lat

0

C. Bauer, G. Bali and A. Pineda, PRL108 (2012).

aδm(a = 0.04 fm) = 0.1508(12)

δm lat
0 ∼ ΛQCD

aδm(a = 0.06 fm) = 0.1586(8)

aδm(a = 0.076 fm) = 0.1597(16)
A. Bazavov et al., TUMQCD, PRD98 (2018).
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• Check of continuum limit:

Wilson-line mass renormalization
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lim
a→0

e−δm(z−z0)
h̃(z, a, Pz = 0)
h̃(z0, a, Pz = 0)

=
h̃(z, Pz = 0, μ)
h̃(z0, Pz = 0, μ)

OΓ
B(z, a) = e−δm|z| ZO(a)OΓ

R(z)

z, z0 ≫ a
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ry
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Matching to the MSbar scheme

8

e−m0(z−z0) lim
a→0

eδm(a)(z−z0)
Q̃(z, a, Pz = 0)
Q̃(z0, a, Pz = 0)

= e−m0(z−z0)
C0(αs(μ), z2μ2)+λz2

C0(αs(μ), z2
0 μ2)+λz2

0

a ≪ z, z0 ≪ Λ−1
QCD

Lattice data

Continuum extrapolation

Pre
lim
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Pre
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ry
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• Power-correction corrected ratio at short distance:


• Hybrid scheme matrix element:

Renormalized matrix element

9

lim
a→0

h̃(z, a, Pz)
h̃(z, a, Pz = 0)

C0(αs(μ), z2μ2)+λz2

C0(αs(μ), z2μ2)
=

h̃(z, Pz, μ)
C0(αs(μ), z2μ2)

0 ≤ z ≤ zS

○ ○ ○
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• When z is larger than the hadron size,  with ; in 
 space, the correlation length ;


• As , , only the twist-2 contribution survives, , 
which is determined by the small-x Regge behavior of the PDF.

h̃(z, Pz) ∝ e−z/ξz ξz ∼ 1/ΛQCD
λ = zPz ξλ = Pzξz ∼ Pz /ΛQCD

Pz → ∞ ξλ → ∞ h̃(λ, Pz) ∼ 1/λd

Physical extrapolation beyond zL
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�� � Pz /�QCD , 0 < Pz
1 < Pz

2 < Pz
3

h(�, Pz)

��

��

��

Pz
1

Pz
2

Pz
3

Pz = �

�0
Figure 2: Qualitative behavior of the quasi-LF correlation in � space at different P z

. For

finite P z
, at short � the correlation is approximated by the leading-twist contribution

and evolves slowly in P z
. At large �, the correlation starts to exhibit the exponential

decay behavior, and both the starting point and correlation length ⇠� increase with

respect to P z
. In the P z

! 1 limit, ⇠� approaches infinity and the quasi-LF correlation

only includes leading-twist contribution which decays algebraically.

which may obscure the result. Namely, one may fit to different values of the
correlation length ⇠� with different choices of the fitting range. Nevertheless,
the variation in ⇠� will mainly affect the region with very small x, which
are anyway less predictive due to power corrections. Therefore, it is not a
prerequisite to fit ⇠� precisely. Instead, one should utilize this property by
varying the fitting range, e.g., within zL�5a  z  zL, and test the stability
of the final result with different ⇠�.

Last but not the least, the Fourier transform of an exponentially decaying
correlation always leads to a finite quasi-PDF at x = 0, which is different
from the Regge behavior of PDFs at small x. Besides, since the PDF at large

20

Therefore, if 

•  is not very large, e.g. 2–5 GeV, use 

an exponential form;


•  is very large, use an algebraic form. 

Pz

Pz
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Impact of exponential 
extrapolation:

• Remove unphysical oscillation 

from Fourier transform;


• Affects the x→0 and x→1 
regions most, but not [xmin, xmax] 
where LaMET can have 
controlled prediction.

Physical extrapolation beyond zL

11

x10

f̃(x, Pz)

λL1

λL2

λL3

λL = ∞

λL1 < λL2 < λL3 < ∞
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Renormalized matrix elements
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Physical extrapolation and Fourier transform

13

Pre
lim

ina
ry

Pre
lim

ina
ry

� � �� �� ��
-���

-���

���

���

���

���

���

���
a=0.04 fm, Pz=1.94 GeV, μ=2 GeV

��� ��� ��� ��� ���
���

���

���

���

���

���

���

���
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Truncated DFT
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• Perturbative correction shows good convergence.

Perturbative matching at NNLO
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Error band assumes 100% correlation of points at all x during the matching.

Pre
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PDF@NNLO

JAM18
xFitter
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���
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���

���

���

��� a=0.04 fm, μ=2.0 GeV, Pz=1.94 GeV
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Comparison with phenomenology
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Pz=1.45 GeV
Pz=1.94 GeV
Pz=2.42 GeV

JAM18
xFitter
ASV
GRVPI1

��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

��� a=0.04 fm, μ=2.0 GeV

Gray band: x<0.12 or x>0.8. (A very preliminary estimate)

Error at Pz=2.42 GeV > 15% or variation in Pz > 1% between Pz=1.94 and 2.42 GeV.
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Comparison with ratio scheme analysis in coordinate space

16

x-space NLO
x-space NNLO
OPE@NLO+model w/ 4 param.
OPE@NNLO+model w/ 4 param.

JAM18
xFitter
ASV
GRVPI1

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

��� a=0.04 fm, μ=2.0 GeV, Pz=2.42 GeV

Ratio scheme with nonzero-momentum matrix elements in the dominator.
X. Gao, YZ, et al., PRD102 (2020).
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ry

Systematics to be included in x-space analysis: physical pion mass, lattice spacing 
dependence, variation of factorization scale (αs), variation of zL, etc.
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• We have carried out lattice calculation of the x-dependence of 
pion valence PDF with the hybrid renormalization scheme;


• The Wilson-line mass correction can be well determined from 
lattice and matched to the MSbar scheme by using the NNLO 
OPE formula with quadratic power correction;


• NNLO matching shows good perturbative convergence;


• We demonstrate that we can predict the x-dependence with 
controlled systematic uncertainties within a subregion of x;


• Systematics to be analyzed: physical pion mass, lattice spacing 
dependence, variation of factorization scale (αs), variation of zL, 
etc.

Conclusion

17


