On the axial-vector form factor of the nucleon and chiral symmetry

Matthias F.M. Lutz

GSI Helmholtzzentrum für Schwerionenforschung GmbH

- \checkmark Chiral symmetry for the $\pi N\Delta$ system
- ✓ Lattice results from two flavour ensembles
- ✓ Global fits and χPT convergence issues
- ✓ Summary and outlook

Chiral extrapolation for QCD with up and down quarks

- ✓ consider $m_{u,d} \simeq 2-5$ MeV to be small in QCD
 - approximate $SU(2)_{L\otimes}SU(2)_R$ chiral symmetry
 - apply χPT in terms of the chiral Lagrangian
- ✓ how-to power count in the presence of heavy fields?
 - controversial how to deal with the $\Delta(1232)$ baryon
 - conventional expansion schemes appear very slow (if at all) convergent
- ✓ novel expansion scheme in terms of on-shell masses
 - pioneered for various hadrons on flavour SU(3) ensembles
 - chiral expansion is not necessarily smooth first order transitions are possible
 - revisted for flavour SU(2) chiral expansions

U. Sauerwein, MFML, RGE Timmermans, arXiv:2105.06755
MFML, U. Sauerwein, RGE Timmermans, arXiv:2003.10158
X. Guo, Y. Heo, MFML, arXiv:1907.00714
MFML, Y. Heo, X. Guo, arXiv:1907.00237
MFML, Y. Heo, X. Guo, arXiv:1801.06417
A. Semke, MFML, arXiv:nucl-th/0606027

Expansion parameters

•
$$m_{u,d} \sim m_\pi^2 \sim Q^2$$

$$M_N \sim Q^0$$

•
$$\delta = M_{\Delta} - M_N \left(1 + \Delta/M\right) \sim Q^2$$

$$M_N \sim Q^0$$

$$\Delta/M \sim Q^0$$

• with M and $M + \Delta$ from M_N and M_Δ in the chiral limit

Global fit to lattice data from ETMC, CLS and RQCD

- consider masses (M_N, M_{Δ}) axial-vector form factor
- 99 data points $\chi^2/N_{df} \simeq 1.40$

- compare finite-box (orange)
 with infinite-box (black)
- the value of M_{Δ} matters!

Chiral corrections for the axial form factor

- $\delta = M_{\Delta} M_N (1 + \Delta/M) \sim Q^2$ with M and $M + \Delta$ from M_N and M_{Δ} in the chiral limit
- consider different assumptions for M_N and M_{Δ} (one-loop level)
- convergence only with on-shell M_N and M_{Δ}

QCD lattice results on two flavour ensembles

- predict phase-transition at unphysical quark masses (infinite volume case)
- smooth behavior in finite box
- lattice results do not exclude such a behavior so far

Summary and Outlook

Chiral extrapolation of hadron masses and form factors

- chiral expansion with up and down quarks is well convergent iff expansion parameters are used in terms of on-shell hadron masses
- quantitative reproduction of two-flavour lattice data sets (ETMC, RQCD, CLS)
- predict low-energy constants of the chiral Lagrangian

✓ Precision extrapolation results for baryons?

- should use ensembles at physical strange quark mass
 we predicted the isobar strangeness sigma terms to be large
 form factor have a significant dependence on the isobar mass
- need more precision data on the isobar

✓ Parameteric phase transitions in QCD ?

- are not ruled out by current lattice data
- ensembles at large boxes and large pion masses would be needed
- in flavour SU(3) ensembles at smaller strange quark mass
- such a phase transition could be a candidate for strange dark matter