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In Minkowski space-time, for neutral pion (charged pion discuss in later

slides):

Heff = −
4π

2
απE

2 −
4π

2
βπB

2 Minkowski (1)

In Euclidean space-time, the electric field absorbs an i coefficient. Therefore,
we have

Heff =
4π

2
απE

2 −
4π

2
βπB

2 (2)

Jµ(x) = Jµ(tx , x⃗) = e
(
eu ū(x)γµu(x) + ed d̄(x)γµd(x) + es s̄(x)γµs(x)

)
(3)

where {γµ, γν} = 2δµ,ν , eu = 2/3, ed = es = −1/3, and αQED = e
2/(4π) ≈

1/137. We will use Euclidean space-time convention by default in the rest of
the talk.
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There are Chiral Perturbation Theory calculations to two-loop order:

• Charged pion: U. Burgi (hep-ph/9602421, hep-ph/9602429), J. Gasser et al.
(hep-ph/0602234)

• Neutral pion: J. Gasser et al. (hep-ph/9401206, hep-ph/0506265)

There are also some lattice calculations with the background field method. Recently,
we have

• απ: H. Niyazi (arXiv:2105.06906)

• βπ: R. Bignell et al (arXiv:2005.10453), H.T Ding et al (arXiv:2008.00493)

There are also attempts to use hadronic tensor (4-point function) to extract polariz-
ablities: M. Burkardt et al (hep-lat/9406009), W. Wilcox (arXiv:2106.02557). Realis-
tic lattice calculations along this direction difficult.
In this work, we derive different position space formulas with the hadronic tensor to
obtain the pion electric polarizabilities. We demonstrate these formulas allow efficient
lattice calculations and will show some numerical results.
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• We are looking for the second order effects on the pion energy due to

the static E&M fields.

Heff =
4π

2
απE

2 −
4π

2
βπB

2 (4)

• E&M fields are described by the vector potential Aµ(x). It couples
with pion through the vector current Jµ(x).

απ, βπ ∼ ⟨π|TJµ(x)Jν(0)|π⟩ (5)

We start the derivation in a very large, finite volume, periodic box. We can
imagine the finite volume box during the derivation to be much larger than
the real lattice sizes so the finite volume effects can be neglected. After the
final master formula is obtained, we can then analyze possible finite volume
effects for realistic lattice calculations.
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Consider the zero momentum neutral pion correlation function (tsnk ≫ 0 ≫ tsrc)
in the presence of very smooth and slow varying external vector potential Aµ(x) =
Aµ(tx , x⃗).

⟨Tπ(tsnk)π(tsrc)⟩Aµ

= ⟨Tπ(tsnk)π(tsrc)⟩ exp
(
− 1
L3

∫
x

4π

2

(
απE(x)

2 − βπB(x)2
))

(6)

That is:

1−
⟨Tπ(tsnk)π(tsrc)⟩Aµ
⟨Tπ(tsnk)π(tsrc)⟩

=
1

L3

∫
x

4π

2

(
απE(x)

2 − βπB(x)2
)

(7)

Using perturbation theory, we have (notice the term proportion to A vanishes)

1−
⟨Tπ(tsnk)π(tsrc)⟩Aµ
⟨Tπ(tsnk)π(tsrc)⟩

=
1

2

∫
x

(∫
y

Aµ(x + y)Aν(y)

)
⟨Tπ(tsnk)Jµ(x)Jν(0)π(tsrc)⟩

⟨Tπ(tsnk)π(tsrc)⟩
(8)

Combine the two results (and use infinite volume pion matrix elements):∫
x

4π

2

(
απE(x)

2 − βπB(x)2
)
=

∫
x

(∫
y

Aµ(x + y)Aν(y)

)
1

2Mπ

1

2
⟨π|TJµ(x)Jν(0)|π⟩ (9)
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Consider a spatial position independent vector potential A⃗(tx) = A⃗(tx , x⃗) = A⃗(x).

Only electric field is non-zero. Performed the Taylor expansion for A and only keep
the leading non-zero term:

Ieff =

∫
tx

4π

2
απE(tx)

2 (10)

=

∫
tx ,x⃗ ,ty

Aj(ty )
1

2
t2x ∂

2
t Ai(ty )

1

2Mπ

1

2
⟨π|TJi(tx , x⃗)Jj(0, 0⃗)|π⟩ (11)

= −
∫
ty

1

2
∂t A⃗(ty ) · ∂t A⃗(ty )

∫
tx ,x⃗

1

3
t2x
1

2Mπ

1

2
⟨π|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π⟩ (12)

Therefore, we obtain the master formula for neutral pion.

απ = −
1

4π

∫
tx

∫
x⃗

1

3
t2x
1

2Mπ

1

2
⟨π|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π⟩ (13)

While the formula is derived assuming a extremely large volume, both in the time
and the spatial direction. We can use this formula with a modest lattice size and
source-sink time separation. Finite volume errors are exponentially suppressed.
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Similarly, we can choose Aµ(t, x⃗) = Aµ(x⃗) for a very large range of t, and
obtain some different formulas for neutral pion:

απ = −
1

4π

∫
tx

∫
x⃗

1

3
x⃗2
1

2Mπ

1

2
⟨π|TJt(tx , x⃗)Jt(0, 0⃗)|π⟩ (14)

βπ =
1

4π

∫
tx

∫
x⃗

1

6
x⃗2
1

2Mπ

1

2
⟨π|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π⟩ (15)

= −
1

4π

∫
tx

∫
x⃗

1

3

1

2Mπ

1

2
⟨π|T x⃗ · J⃗(tx , x⃗)x⃗ · J⃗(0, 0⃗)|π⟩ (16)

Note that the four point function ⟨π|TJµ(x)Jν(0)|π⟩ satisfies current con-
servation constraints. Different formulas for απ and βπ can be obtained.
They are equivalent due to the constraint. In practical lattice calculations,
they may have different finite volume error, discretization error (if we use lo-
cal current), and statistical error.
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Defined through the subtracted Compton tensor:

⟨π|TJµ(tx , x⃗)Jν(0, 0⃗)|π⟩S
= ⟨π|TJµ(tx , x⃗)Jν(0, 0⃗)|π⟩ − ⟨π|TJµ(tx , x⃗)Jν(0, 0⃗)|π⟩Born (17)

See arXiv:1905.05640 sec 4.3, 4.4.



Charged pion polarizabilities 10 / 18

The subtraction of Born term for the charged pion can be evaluated for the
master formula:

απ± = −
1

4π

∫
tx

∫
x⃗

1

3
t2x
1

2Mπ

1

2
⟨π±|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π±⟩S (18)

= −
∫
tx ,x⃗

t2x
24π

1

2Mπ
⟨π±|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π±⟩ − αBorn

π± (19)

where αBorn
π± = −αQED

r2π
3Mπ

, and rπ = 0.659(4) fm (PDG) is the π± charge
radius.
Note that the single pion intermediate states do not contribute in the above
matrix elements. This is not true for the other three formulas, in which case
we need to subtract the Born term matrix elements in the same finite vol-
ume lattice and then perform the coordinate integration to ensure exponen-
tially suppressed finite volume effects.
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Use the RBC-UKQCD 48I and 64I physical pion ensemble.

• mπ = 0.139 GeV.
Calculation use partially quenched pion mass 0.135 GeV.

• 48I: a−1 = 1.730 GeV, 64I: a−1 = 2.359 GeV.

• 48I: L = 5.48 fm, 64I: L = 5.35 fm.

Polarization of the sea quark is not included in the calculation (most discon-
nected diagram is not included yet).

απ(t) = −
∫
−t<tx<t

∫
x⃗

t2x
24π

1

2Mπ
⟨π|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π⟩ − αBorn

π (20)

We will plot the results as a function of t, and απ = απ(t → +∞).
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Only two types of diagrams remain in the difference. Both are included.



Preliminary results -απ± − απ0 16 / 18

Finite volume effects study with 24D/32D (4.7 fm v.s. 6.3 fm) ensembles.
Only the connected diagram.
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• Derived the formula to obtain the pion electric and magnetic
polarizabilities.

• Preliminary results for pion electric polarizabilities απ is obtained at
physical pion mass. The result is consistent with ChPT predictions
with competitive and improvable accuracy. We can expect the
precision of lattice calculation to improve in the future.

• We plan to calculate the missing disconnected diagrams and the kaon
polarizabilities.



• Calculation performed by reusing propagators generated for the lattice
HLbL calculation at MIRA.



Thank You!



Detailedderivations
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Using perturbation theory, we have

⟨Tπ(tsnk)π(tsrc)⟩Aµ

= ⟨Tπ(tsnk)π(tsrc)⟩+ ⟨Tπ(tsnk)

∫
x

iAµ(x)Jµ(x)π(tsrc)⟩ (21)

+
1

2
⟨Tπ(tsnk)

∫
x

iAµ(x)Jµ(x)

∫
y

iAν(y)Jν(y)π(tsrc)⟩

Recall for neutral pion, we have

⟨π(tsnk)Jµ(x)π(tsrc)⟩ = 0 (22)

Also with the translation invariance of the matrix elements and then shift the integra-
tion for x ,

1

2
⟨Tπ(tsnk)

∫
x

iAµ(x)Jµ(x)

∫
y

iAν(y)Jν(x)π(tsrc)⟩

= −
∫
x

(∫
y

Aµ(x + y)Aν(y)

)
1

2
⟨Tπ(tsnk)Jµ(x)Jν(0)π(tsrc)⟩ (23)
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Therefore, we have:

1−
⟨Tπ(tsnk)π(tsrc)⟩Aµ
⟨Tπ(tsnk)π(tsrc)⟩

=

∫
x

(∫
y

Aµ(x + y)Aν(y)

)
1

2

⟨Tπ(tsnk)Jµ(x)Jν(0)π(tsrc)⟩
⟨Tπ(tsnk)π(tsrc)⟩

(24)

Combining with the definitions of the pion polarizabilities, we have:

1

L3

∫
x

4π

2
απE(x)

2 − 1
L3

∫
x

4π

2
βπB(x)

2

=

∫
x

(∫
y

Aµ(x + y)Aν(y)

)
1

2

⟨Tπ(tsnk)Jµ(x)Jν(0)π(tsrc)⟩
⟨Tπ(tsnk)π(tsrc)⟩

(25)

To be precise, we actually need to subtract the vacuum contribution to remove the
effect of the vacuum polarization.

⟨Tπ(tsnk)Jµ(x)Jν(0)π(tsrc)⟩
⟨Tπ(tsnk)π(tsrc)⟩

→ ⟨Tπ(tsnk)Jµ(x)Jν(0)π(tsrc)⟩
⟨Tπ(tsnk)π(tsrc)⟩

− ⟨TJµ(x)Jν(0)⟩ (26)

We will assume this subtraction in later discussion without explicitly writing it down.
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Note that, with infinite volume state normalization condition, we have:

1

2Mπ

1

2
⟨π|TJµ(x)Jν(0)|π⟩ = L3

1

2

⟨Tπ(tsnk)Jµ(x)Jν(0)π(tsrc)⟩
⟨Tπ(tsnk)π(tsrc)⟩

(27)

We can then rewrite the finite volume results in terms of the infinite volume conven-
tion expression:∫

x

4π

2
απE(x)

2 −
∫
x

4π

2
βπB(x)

2

=

∫
x

(∫
y

Aµ(x + y)Aν(y)

)
1

2Mπ

1

2
⟨π|TJµ(x)Jν(0)|π⟩ (28)

where the normalization of the infinite volume state is

⟨π(p⃗′)|π(p⃗)⟩ = (2π)32Eπ,p⃗δ(3)(p⃗ − p⃗′) (29)
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Consider a spatial position independent vector potential A⃗(tx) = A⃗(tx , x⃗) = A⃗(x).
Only electric field is non-zero, therefore we have:

Ieff =

∫
tx

4π

2
απE(tx)

2 (30)

=

∫
tx ,x⃗

(∫
ty

Ai(tx + ty )Aj(ty )

)
1

2Mπ

1

2
⟨π|TJi(tx , x⃗)Jj(0, 0⃗)|π⟩ (31)

Since the time dependence is very mild, we have:

Ieff =

∫
tx ,x⃗ ,ty

Aj(ty )
(
Ai(ty ) + tx∂tAi(ty ) +

1

2
t2x ∂

2
t Ai(ty )

)
× 1

2Mπ

1

2
⟨π|TJi(tx , x⃗)Jj(0, 0⃗)|π⟩ (32)

The first and the second term vanishes. The third term is proportion to the E&M
field strength square, which can be matched with the polarizability expression.
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Ieff =

∫
tx

4π

2
απE(tx)

2 (33)

=

∫
tx ,x⃗ ,ty

Aj(ty )
(
Ai(ty ) + tx∂tAi(ty ) +

1

2
t2x ∂

2
t Ai(ty )

)
× 1

2Mπ

1

2
⟨π|TJi(tx , x⃗)Jj(0, 0⃗)|π⟩ (34)

The first term vanishes due to current conservation and vanishing boundary terms.∫
x

⟨π|TJµ(x)Jν(0, 0⃗)|π⟩ =
∫
x

⟨π|T∂ρ
(
xµJρ(x)

)
Jν(0, 0⃗)|π⟩ = 0 (35)

The second term vanishes due to spatial and time reflection symmetry.∫
x⃗

⟨π|TJi(tx , x⃗)Jj(0, 0⃗)|π⟩ =
1

3
δi ,j

∫
x⃗

⟨π|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π⟩ (36)

=
1

3
δi ,j

∫
x⃗

⟨π|T J⃗(−tx , x⃗) · J⃗(0, 0⃗)|π⟩ (37)

Therefore, only the third term remains.
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Ieff =

∫
tx

4π

2
απE(tx)

2 (38)

=

∫
tx ,x⃗ ,ty

Aj(ty )
1

2
t2x ∂

2
t Ai(ty )

1

2Mπ

1

2
⟨π|TJi(tx , x⃗)Jj(0, 0⃗)|π⟩ (39)

= −
∫
ty

1

2
∂t A⃗(ty ) · ∂t A⃗(ty )

∫
tx ,x⃗

1

3
t2x
1

2Mπ

1

2
⟨π|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π⟩ (40)

Therefore:

απ = −
1

4π

∫
tx

∫
x⃗

1

3
t2x
1

2Mπ

1

2
⟨π|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π⟩ (41)

While the formula is derived assuming a extremely large lattice, both in the time and
the spatial direction. This final formula can be calculated using a modest lattice size
and source-sink time separation with exponentially suppressed finite volume errors.
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Based on the Born term definition, we have:

T Born
µ,ν (qt , q⃗) =

∫
tx ,x⃗

e iqt tx−i q⃗·x⃗⟨π|TJµ(tx , x⃗)Jν(0, 0⃗)|π⟩ (42)

= e2F 2(q2t + q⃗
2)
(
2δµ,ν −

(2p + q)µ(2p + q)ν
(p + q)2 +M2π

− (2p − q)µ(2p − q)ν
(p − q)2 +M2π

)
(43)

where p = (iMπ, 0⃗). Therefore:

∂2

∂q2t
T Born
k,k (qt , 0⃗)

∣∣∣∣∣
qt=0

= −
∫
tx ,x⃗

t2x ⟨π|TJk(tx , x⃗)Jk(0, 0⃗)|π⟩Born (44)

=
∂2

∂q2t

(
e2F 2(q2t )2δk,k

)
(45)

For charged pion, we have Fπ±(q2) ≈ 1 − r 2πq2/6, where rπ = 0.659(4) fm (PDG),
is the π± charge radius. Combining the above equations, we obtain the expression for
απ± :

απ± = −
∫
tx ,x⃗

t2x
24π

1

2Mπ
⟨π±|T J⃗(tx , x⃗) · J⃗(0, 0⃗)|π±⟩ − αBorn

π± (46)

where αBorn
π± = −αQED

r2π
3Mπ
= −14.94(18)× 10−4 fm3.
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