Confinement and Chiral Symmetry in the SU(3) Instanton-dyon Ensemble Lattice 2021 (MIT)

Dallas DeMartini

Stony Brook University Pure $SU(3)$: 2102.11321 [hep-ph]; Two-flavor QCD: in progress done in collaboration with E. Shuryak

July 26, 2021

Outline

[Background](#page-2-0)

- [Instanton-Dyons in Yang-Mills Theory](#page-2-0)
- [Dyons and holonomy](#page-4-0)

[The Dyon Ensemble](#page-5-0)

- [Dyon Interactions and Partition Function](#page-5-0)
- **•** [Fermionic Determinant](#page-7-0)

[Results](#page-11-0)

- **[The Polyakov Loop and Confinement](#page-11-0)**
- **[Dirac Eigenvalues and the Chiral Condensate](#page-14-0)**
- • Instantons are 4D topological solitons related to tunneling between vacua of different N_c s
- Instantons generate chiral symmetry breaking, but not confinement; monopoles needed
- Instantons do not interact directly with the holonomy and are charge neutral
- • At $\langle P \rangle \neq 0$, the instanton is seen to be made of N_c constituents \rightarrow the dyons
- Dyons have non-zero magnetic charge and non-integer topological charge
- Their action $S_i = \frac{8\pi^2}{g^2}$ $\frac{3\pi^2}{g^2}$ *v_i* is \approx 4 near T_c , making them suitable for using semiclassical methods
- Dyon action sets temperature scale $S_0 = \frac{8\pi^2}{g^2}$ $\frac{3\pi^2}{g^2}=\frac{11}{3}N_c$ ln (\varUpsilon/Λ)

Figure: [Kraan, van Baal (1998)]

- $\langle P \rangle = \frac{1}{3} + \frac{2}{3}$ $rac{2}{3}$ cos $(2\pi\nu)$
- $\langle P \rangle = 0$, $\nu = \frac{1}{3} \rightarrow$ confined phase
- Dyons have individual actions $S_{M1} = S_{M2} = S_0 \nu$. $S_1 = S_0(1 - 2\nu)$
- Antidyons have the same properties with opposite magnetic and topological charges

$$
f = \frac{4\pi^2}{3} \left(2(\nu(1-\nu))^2 + (2\nu(1-2\nu))^2 \right)
$$

- 4*n_M* ln $\left[\frac{d_{\nu}e}{n_{M}} \right]$ - 2*n_L* ln $\left[\frac{d_{1-2\nu}e}{n_{L}} \right]$ + $\frac{\ln(8\pi^3 N_{M}^2 N_{L})}{\tilde{V}_3}$ + Δf
Compute Δf by Monte-Carlo integration
Minimize $f(T, \nu, n_{M}, n_{L})$ to get $f(T), \nu(T), n_{M}(T), n_{L}(T)$ (1)

≮ロト ⊀母 ト ≮ ヨ ト ⊀ ヨ ト

重

•
$$
\Delta S_{\text{class}}^{d\bar{d}} = -\frac{S_0 C_{d\bar{d}}}{2\pi} \left(\frac{1}{r\bar{t}} - 2.75\pi \sqrt{\nu_i \nu_j} e^{-1.408\pi \sqrt{\nu_i \nu_j} r\bar{t}} \right)
$$

• $C_{d\bar{d}} = 2$ for same kind, -1 for different kinds of dyons

$$
\bullet \ \Delta S_{\text{class}}^{\text{core}} = \frac{\nu V_0}{1 + e^{2\pi \nu \tau(r - r_0)}}
$$

- Core is used at distances smaller than $x_0 = 2\pi \nu rT$, core radius goes as $1/\nu$
- Diakonov Determinant:

$$
G_{im,jn} = \delta_{ij}\delta_{mn}(4\pi\nu_m - \sum_{k \neq i} \frac{2}{T|r_{i,m} - r_{k,m}|} + \sum_{k} \frac{1}{T|r_{i,m} - r_{k,p \neq m}|}) + \frac{2\delta_{mn}}{T|r_{i,m} - r_{j,n}|} - \frac{\delta_{m \neq n}}{T|r_{i,m} - r_{j,n}|},
$$
\n(2)

4 0 8

- • We now include $N_f = 2$ flavors of dynamical massless quarks
- Dynamical \rightarrow we include the fermionic determinant in the partition function
- In physical QCD the deconfinement transition is a smooth crossover, unlike the pure $SU(3)$ theory
- We can study the Dirac eigenvalue spectrum and thus the chiral condensate and chiral symmetry

$$
\bullet \Sigma = |\langle \bar{q}q \rangle| = \lim_{V \to \infty} \lim_{\lambda \to 0} \pi \rho(\lambda)
$$

 200

- Two new terms in our partition function
- Quark perturbative potential $V_{quark} = -N_f \frac{4\pi^2}{3}$ $rac{\pi^2}{3}(2\nu^4-\nu^2)$
- **•** Fermionic determinant $\det(i\not\!\!\!D)^{\textstyle N_f}\simeq\det(\hat{\mathcal{T}})^{\textstyle N_f}$
- Consider only the space spanned by the dyons' zero modes

Quarks can 'hop' from dyon to antidyon with amplitude T_{ij}

\n- $$
\hat{\mathcal{T}} = \begin{pmatrix} 0 & T_{ij} \\ -T_{ji} & 0 \end{pmatrix}
$$
\n- $T_{ij} = \bar{v}c' \exp\left(-\sqrt{11.2 + (\pi \bar{\nu}rT)^2}\right)$
\n- $\det(\hat{\mathcal{T}}) = T_{11}^2 T_{22}^2 + T_{12}^2 T_{21}^2 - 2T_{11}T_{21}T_{22}T_{12}$
\n

4 **D F**

Þ

 QQQ

- • Compute free energy by standard integration over a dummy parameter in 10 steps $\lambda = 0.1,...1$
- Perform $\mathcal{O}(50000)$ simulations with different inputs
- For each value of $S_0(T)$, fit to find minimizing input parameters
- Simulations run with $N_D = 120$ dyons in a 3D periodic box setup

The First-Order Transition

- Phase transition at $S_0 = 13.18$
- Jumps from $\langle P \rangle = 0$ to $\langle P \rangle \simeq 0.4$ ($\nu = 1/3$ to $\nu \simeq 0.23$)

4 0 8

Þ

Polyakov Loop and T_c

Figure: $N_f = 0$, Eachee data nome
Kaczmarek et. al. (2002)

4 0 8

 299

Þ

Dyon Densities

4日 ト

D

×

 299

э

Zero-Mode Zone

Figure: Left: $S_0 = 8$, Right: $S_0 = 14$

Low T: there is a finite density $\rho(0) \rightarrow$ broken chiral symmetry High T : an eigenva[l](#page-13-0)ue gap Δ appears, res[tor](#page-13-0)e[d](#page-15-0) [c](#page-13-0)[hi](#page-14-0)[ra](#page-15-0)l [s](#page-14-0)[y](#page-16-0)[m](#page-11-0)m[et](#page-16-0)[ry](#page-0-0)_

Dallas DeMartini (Stony Brook) SU[\(3\) Instanton-dyons](#page-0-0) July 26, 2021 15/17

Chiral Phase Transition

- The condensate quickly goes to zero at the same time a non-zero eigenvalue gap forms
- **•** From this, we estimate $S_0(T_c) = 13.25$
- Should also belong to $O(4)$ universality class
- The dyon ensemble does possess a first-order deconfinement phase transition to the same value of $\langle P \rangle$ as the lattice for the pure $SU(3)$ theory and is compatible with a second-order transition when $N_f = 2$
- High dyon density leads to collectivization of zero modes and generates a nonzero chiral condensate at below T_c and finite eigenvalue gap above T_c
- Not discussed: Topological susceptibility, dyon correlations, trace deformed theory, nonzero quark mass

 Ω