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1. Introduction
 About the double-winding Wilson loop operator
Greensite and Höllwieser introduced a double-winding Wilson loop operator                  
in the lattice gauge theory (LGT) to examine the quark confinement mechanism:           
([1]Phys. Rev. D91, 054509 (2015))

is a trace of the path-ordered product of gauge link variables               along a 
closed loop      composed of two loops      ,      .

“shifted” ,                                                               “coplanar” ,



 The area dependence of the expectation value
 In the lattice SU(2) Yang-Mills model, “difference-of-areas law” for                          

has been first showed in [1]: 

 In the continuum SU(N) Yang-Mills model, Matsudo and Kondo showed that there is
a novel “max-of-areas law” which is neither difference-of-areas law nor sum-of-areas
law for multiple-winding Wilson loop average. ([2]Phys. Rev. D96, 105011 (2017))

 In the lattice SU(N) Yang-Mills model, Kato et al. showed that there is an N-dependent
area law falloff for                         : ([3]Phys. Rev. D102, 094521 (2020))

for N=2 , “difference-of-areas law”
for N=3 , “max-of-areas law”
for N≥4 , “sum-of-areas law”

:
:

:



 Center group dominance and quark confinement
 Fröhlich showed that the Wilson loop average in the non-Abelian LGT with the gauge

group G is bounded from above by the same Wilson loop average in the Abelian LGT with
the center gauge group Z(G): ([4]Phys. Lett. 83B, 195 (1979))

 From the result of [4], confinement in the       LGT implies confinement in the SU(N) LGT.
Moreover, confinement in the U(1) LGT implies confinement in the U(N) LGT.
(due to the property                          and                        )

 The above statement can be extended to the double-winding Wilson loop average,
beyond the case of the ordinary single-winding Wilson loop average:



 Motivation
Examination of the center group dominance for a double-winding Wilson loop average
 We introduce the character expansion to the weight            from the action and perform

the group integration, in order to estimate the expectation value in the       LGT.

 We evaluate the double-winding Wilson loop average up to the leading contribution to
show that the N-dependent area law falloff in the SU(N) LGT can be reproduced by
using the (Abelian)       LGT.

 By taking the limit N→∞, We also investigate the center group dominance for a double-
winding Wilson loop average in the U(N) LGT through the U(1) LGT.

 We extend the above arguments for the       LGST. On the “analytic region”, we estimate
the area law falloff, the string tension, the mass gap by using the cluster expansion.



2. Lattice      gauge theory
 Character expansion
The action of the lattice       gauge theory:

,
We apply the character expansion :

where                                   , we define                          . 

Note that in the region          ,
for N≥2 ,                    for N≥4 

(N=2) (N=3)

(N=4)

(N=∞)

,

,

as a function of β (N=2,3,4,∞)

as a function of β (N=3,4,∞)



 A coplanar double-winding Wilson loop (      LGT)
The leading contribution to a coplanar double-winding Wilson loop average is given by 
the tiling by a planar set of plaquettes, as shown in the following diagrams.                
(These result are exact for all β when D=2, while valid for           when D>2):
 N=2

 N≥3

The result for general N:

The string tension:

 In the strong coupling region, this result reproduces 
the area law falloff in the SU(N) LGT obtained in [3].

 In the continuous group limit N→∞, the area law for 
N≥4 persists in the U(1) LGT.



 A shifted double-winding Wilson loop (      LGT)
The leading contribution to a shifted double-winding Wilson loop average can be given 
by the 2 types of tiling by a set of plaquettes, as shown in following diagrams:
 typeⅠ: R-independent

 typeⅡ: R-dependent

The result for general N :

typeⅠ                      typeⅡ

 This result reproduces the R-dependence of the 
shifted double-winding Wilson loop average in [3].

 The non-zero mass gap Δ(β) is obtained from the 
case of                   and            :



3. Lattice      gauge scalar theory
 Cluster expansion
The       LGT with the “fundamental” scalar field               :

,

We introduce                             and                       . Then,
has the cluster expansion : ([5]K. Osterwalder and E. Seiler, Annals Phys. 110, 440 (1978))

where       is the set of plaquettes which is the support of     ,           is the set of plaquettes 
which is connected to      . Note that               for          .
Fradkin and Shenker showed that the confinement region (                       ) and the Higgs 
region (                          ) are connected in the analytic region, where the cluster expansion 
converges uniformly. ([6]Phys. Rev. D19, 3682-3697 (1979))



 The evaluation of h[U]
We apply the character expansion and perform the group integration. Ignoring the 
contributions from multiple plaquettes, we obtain the expression which is valid up to the 
lowest plaquettes order:

 The estimation of the upper bound of                   (      LGST)
To estimate the leading contribution to                  with the above h[U], we also apply the 
character expansion for      and evaluate the upper bound of the cluster expansion by using 
the binominal expansion. 
There is an analogy between the results for the      LGT and for the      LGST:

Note that                         and                    .
This evaluation is valid only for the range R where the string breaking does not occur and 
for the values of parameter β and K on the analytic region.



 A coplanar double-winding Wilson loop (      LGST)
The coplanar double-winding Wilson loop average and the string tension:

,

A shifted double-winding Wilson loop (      LGST)
The shifted double-winding Wilson loop average and the mass gap:

 The area law falloff in the      LGT persists in the      LGST. (K→0 limit is consistent)
 For σ(β,K), K→0 limit agree with σ(β) in the      LGT.

In K→∞ limit,σ(β,K)→0. (The string tension is non-zero on the analytic region)

 For Δ(β,K), K→0 limit agree with Δ(β) in the      LGT.
In K→∞ limit, Δ(β,K)→0. (The mass gap is non-zero on the analytic region)



4. Conclusion
We studied the area law falloff of the double-winding Wilson loops in the       LGT and       
LGST, where the gauge group is the center group of the original SU(N).

We evaluated the N-dependent area law falloff for                         up to the leading 
contribution. We found the area law falloff in the       LGT, which reproduces the area law 
falloff in the SU(N) LGT theory obtained in [3].

We also checked the limit N→∞, the area law falloff for N≥4 persists in the U(1) LGT.        
This result implies that                         in the U(N) LGT and the SU(N) (N≥4) LGT obeys 
the same area law up to the leading contribution.

We also considered                         up to the leading contributions. This result reproduces 
the R-dependent behavior in the SU(N) LGT obtained in [3]. We obtained the (non-zero) 
mass gap Δ(β) from this result.

We extended the above study for the       LGST on the analytic region. We found that the 
area law falloff in the LGT persists in the LGST. We discovered that the string 
tension and the mass gap are non-zero on the analytic region.


