Building quark-Diquark model from LQCD

Kai Watanabe & Noriyoshi Ishii RCNP Theory Group, Osaka University, Japan

Introduction : Diquarks (1)

- Diquark's color = anti-symmetric = 3
 - Baryon = Diquark-quark Bound State
- Diquark inside a baryon
 - Ac baryon (udc) \Rightarrow scalar-diquark
 - Σc baryon (uuc,ddc,udc) \Rightarrow axialvector-diquark
 - Ω ccc baryon (ccc) \Rightarrow axialvector-diquark

 $\mathbf{3}\otimes\mathbf{3}=\bar{\mathbf{3}}\oplus\mathbf{6}$

Baryon

Q

Meson

Introduction : Diquarks (2)

- No direct measurements <= color confinement
 - Naive introduction of quark-diquark interaction & diquark mass
- Some Lattice QCD results
 - From Landau gauge fixed correlator
 - Diquark Mass : ~700 [MeV]
 - Quark mass : ~ 340 [MeV]

Chiral limit

M. Hess, et. al.PRD 58 (1998)

C. Alexandrou, et.al PRL 97, (2006)

- Diquark Size : ~ 1.1 [fm]
 - Presence of static quark (quench)
- Diquark Size : ~ 0.6 [fm]
 - Presence of static quark (full)

 $m_{\pi} \simeq 156 \; MeV$

A.Francis, et.al. arXiv(2021)

HAL QCD method and the Kawanai-Sasaki method

- HALQCD method : Hadron-Hadron pot. from LQCD
 - Potential reproduces the equal-time NBS wave func. from LQCD
 - And the scattering phase shift

※Nambu-Bethe-Salpeter

- Application to the quark-antiquark system
 - Naive choice of quark mass

Y. Ikeda and H. Iida, Progress of Theoretical Physics 128, 941 (2012)

- Kawanai-Sasaki method
 - Quark mass determined from spin-spin interaction and hyp. splitting
 - Not applicable to quark-(scalar)diquark system (No spin-spin interaction)

T. Kawanai and S. Sasaki, Phys. Rev. Lett. **107**, 091601 (2011)

- >We propose an alternative
 - Extend HALQCD method to quark-diquark system

 η_c

Aim of our current works

- Investigate the interaction and mass of diquarks
 - Consider charmed baryon ∧c(udc)
 >heavy quark acts like a spectator -> Diquark enhanced
 - Consider iso-scalar scalar diquark (0⁺)

strategy

Quark-diquark NBS wave function for $\Lambda_c(1^+/2)$

- The equal-time NBS wave function $\psi(\boldsymbol{x}, \boldsymbol{y}) \equiv \langle 0 | D(\boldsymbol{x}) c(\boldsymbol{y}) | \Lambda_c (1^+/2) \rangle$
 - In Lattice QCD, extracted from 4pt. func.

 $C_{\alpha\beta}(\boldsymbol{x},\boldsymbol{y},t) \equiv \langle 0 | D^{i}(\boldsymbol{x},t) c_{i,\alpha}(\boldsymbol{y},t) \overline{\mathcal{J}}_{cud,\beta}(1/2) | 0 \rangle$

Projection to parity + state

$$C(\boldsymbol{x}, \boldsymbol{y}, t) \equiv \left[\frac{1+\gamma_0}{2}\right]_{\alpha, \beta} C_{\alpha\beta}(\boldsymbol{x}, \boldsymbol{y}, t)$$

In large time-region

 $C(\boldsymbol{x}, \boldsymbol{y}, t) = \psi(\boldsymbol{x}, \boldsymbol{y}) \exp(-M_{\Lambda_c} t)$

• Projection to C.o.M. and s-wave (A⁺_1)

 $\overline{\mathcal{J}}_{cud,\alpha}\left(1/2\right) = \left\{ \left[uC\gamma_5d\right]c_{3,\alpha'}\right\}^{\dagger}\gamma_{\alpha'\alpha}$

Ac (1/2) operator

 $D^{c}(\boldsymbol{x}) \equiv \epsilon^{abc} u_{a}(\boldsymbol{x}) C \gamma_{5} d_{b}(\boldsymbol{x})$

Diquark operator

Schrödinger equation

Demand NBS wave func. to satisfy Schrödinger equation

$$-\frac{\nabla^2 \phi(r)}{2\mu} + \int d^3 r' U(r, r') \phi(r') = E\phi(r)$$

• Derivative expansion of non-local potential $\mu = m_D m_c/(m_D + m_c)$ Reduced mass

$$-\frac{\nabla^2 \phi(r)}{2\mu} + U(r)\phi(r) = E\phi(r)$$

- Define "pre-potential" from the NBS wave function $-\frac{\nabla^2 \phi(r)}{\phi(r)} = 2\mu \left\{ U(r) E \right\} \quad \text{Pre-potential}$
- Evaluate the spectrum from pre-potentials
 - Demand $\boldsymbol{\mu}$ to reproduce the p-wave excitation energy from 2pt func.

Inelastic region $\Sigma_c + \pi$

 $E \equiv M_{\Lambda_c} - m_c - m_D$ Binding E

U(r,

$$\begin{aligned} r') &= U(r)\delta(r-r') \\ &+ U^{(1)}(r)\nabla\delta(r-r') \\ &+ U^{(2)}(r)\nabla^2\delta(r-r') \\ &+ \cdots \end{aligned}$$

LS force, etc.

Lattice QCD setup

• PACS-CS 2+1 flavor dynamical configuration (#conf = 399)

- Iwasaki gauge action Ukita et.al. (PACS-CS collaboration) PRD 79 (2009)
- Improved Wilson quark action
- Lattice size & lattice spacing $M_{\pi} \simeq 700 \, [\text{MeV}]$

 $V \times T = 32^3 \times 64\,$, a \cong 0.0907 [fm]

$$La \simeq 3(fm)$$

Relativistic heavy quark action for charm quark

Namekawa et.al. (PACS-CS collaboration) PRD 87 (2013)

- Wall source for all quarks
- Fixed to Coulomb gauge

Numerical results of NBS wave functions and pre-potentials

- Fit the pre-potential at 0.3 \leq r \leq 1.0 fm
 - Fit function ; Cornell function

$$F_{fit}(r) = -\frac{A}{r} + Br + C$$

- log term is present in charmonium
 - finite quark mass effect

G. S. Bali, Phys. Rept. **343**, 1 (2001)

Y. Koma and M. Koma, Few-Body Systems $\mathbf{54}$ (2013)

$$F_{fit}(r) = -\frac{A}{r} + Br + C\log(r) + D$$

Eigen value problem

Solve eigenvalue problem for the pre-potential

$$-\frac{1}{r^{2}}\frac{d}{dr}(r^{2}\frac{d}{dr})\phi_{l}(r) + 2\mu \left[U(r) - E_{l}\right]\phi_{l}(r) + \frac{l(l+1)}{r^{2}}\phi_{l}(r) = 0$$

pre-potential
• p-wave "pre-excitation energy"
$$2\mu \left(E_{p} - E_{s}\right) = 0.661(7) \text{ GeV}^{2}$$

()

 $1 \land 1$

T

T

p-wave excitation energy from a two-point function

- p-wave excitation energy from baryon mass
 - p-wave splits due to LS force
 - (s=1/2) \otimes (l=1) \Rightarrow J=1/2, 3/2
 - Restore p-wave Energy from J=1/2,3/2

 $\frac{1}{3}(2M_{\Lambda_c(3^-/2)}+M_{\Lambda_c(1^-/2)})$

- Baryon spectrum
 - From the 2pt. correlation function

$$\varDelta E_{s,p}=0.457(7)~{
m GeV}$$

Diquark mass

Diquark mass

$$m_D = \frac{\mu m_c}{m_c - \mu}$$

 $M_D = 1.220(45) \, [\text{GeV}]$

• Quark mass (same method to $\bar{c}c$)

Potential

• cD potential and the $c\bar{c}$ potential

- Coulomb coefficient
 - cD : $c\bar{c} \approx 1$: 3
- String tension
 - Roughly the same

	$A [GeV \cdot fm]$	$\sigma~[{\rm GeV/fm}]$	$B \; [\text{GeV}]$	const [GeV]
$c\bar{c}$ (Cornell+log)	0.0972(30)	0.673(32)	0.284(8)	-0.554(18)
$c\bar{c}$ (Cornell)	0.173(13)	0.924(52)	-	-0.0355(468)
c- D (Cornell)	0.0665(107)	1.31(8)	-	-0.610(62)

Summary

- We proposed a new method to calculate the qD potential and the diquark mass from LQCD
 - P-wave excitation energy was evaluated from
 - ➢ HALQCD method
 - ≻ 2pt function
 - Diquark mass was determined by demanding these two results to agree
- In this study
 - Diquark Mass : Consistent with a naive expectation of quark models
 - Slightly heavier than ρ meson mass, 2/3 nucleon mass (roughly the same)
 - Quark-diquark potential : qualitatively similar to quark-antiquark potential
 - Consistent with Coulomb+linear behavior
 - The string tension is roughly the same
 - The Coulomb coefficient is $\sim 1/3$
- Future Works
 - Finer lattice calculation to determine the short range behavior
 - Chiral extrapolation
 - Consider higher excited states
 - Improving gauge fixing \rightarrow Naive Lattice Coulomb gauge fixing may affect rotational symmetry

Thank you for your attention