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Introduction : Diquarks (1)

•Diquarkʼs color = anti-symmetric = !3
• Baryon = Diquark-quark Bound State

•Diquark inside a baryon
• Λc baryon (udc) ⇨ scalar-diquark
• Σc baryon (uuc,ddc,udc) ⇨ axialvector-diquark
• Ωccc baryon (ccc) ⇨ axialvector-diquark 

Building non-relativistic diquark model from Lattice QCD
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3⊗ 3 = 3̄⊕ 6 A novel method is proposed to determine the quark-diquark potential, and quark
and diquark masses in the framework of Lattice Quantum Chromo Dynamics (LQCD) . Treating a
baryon as a quark-diquark bound state, we construct the corresponding two-body effective potential
from the equal time quark-diquark Nambu-Bethe-Salpeter (NBS) wave function by demanding it
to satisfy the Schrödinger’s equation. The quark and diquark masses in the Schrödinger’s equation
must be determined self-consistently because their direct observation is hampered by the color
confinement. After examining that our method gives results consistent with those of prior works
for cc̄ system, we treated Λc baryon to obtain the diquark mass and quark-diquark potential, using
excitation spectra in the odd parity sectors. Numerical calculations were performed on a 323 × 64
lattice with a cutoff of a $ 0.08979 [fm] and the pion mass of mπ $ 700 [MeV]. The results obtained
in this work are mc = 1.852(540) [GeV] for the charm quark and mD = 1.113(215) [GeV] for the
diquark mass. The latter lies between ρ meson mass mρ $ 1.12 [GeV] and the conventional estimate
2mN/3 $ 1.06 [GeV].

I. INTRODUCTION

The structure of hadron as a quark many-body system
is a theme that is relevant not only to hadron physics
but also to astrophysics and particle theory. In partic-
ular, there is a scenario in which a baryon is composed
of three quarks, two of which are bound to form a hy-
pothetical two-quark bound state, and the third quark
binds to it. Such a two-particle bound state is called a
diquark [? ? ]. The diquark model can explain several
exotic hadron levels, or provide an explanation for levels
that are suggested by theory but not yet confirmed by
experiments[? ].

However, since diquarks are colored particles, they can-
not be observed directly due to the color confinement,
and diquarks have been treated exclusively as virtual par-
ticles. Recent developments in Lattice Quantum Chromo
Dynamics (LQCD) have led to attempts to elucidate the
nature of diquarks, and in some limited circumstances,
its spatial extent [? ], q-D interactions [? ] and a gauge
dependent mass [? ] were considered.

Also, the HALQCDmethod[? ? ], which has been used
to calculate Hadron interactions, was extended by Ikeda
and Iida to inter quark systems to calculate the potential
between a quark-antiquark pair[? ]. In addition, for
quark mass that cannot be measured due to confinement,
Kawanai and Sasaki impose a constraint on the mass
from the the hyperfine splitting of the quark-antiquark
system, and determined the mass[? ? ? ].

In this study, we wish to extend the above-mentioned
methods to the quark-diquark(q-D) system to measure
the q-D interaction and the mass of the diquark. Specif-
ically, we consider the charm-[ud]diquark(c-D) system.
This system corresponds to baryon Λc, and the binary
s-wave ground state of c-D corresponds to Λc(

1
2

+
). The

reason for choosing Λc is that the kinematics of light
and heavy quarks are isolated inside a singly charmed

baryon, due to the heavy charm quark mass, suggest-
ing a large contribution from the diquark[? ]. Also, the
heavy charm quark mass will allow us to treat the system
non-relativistically.
This paper is organized as follows. First, in the first

half of Section ??, we construct a two-body effective
quantum mechanics from the NBS wave function, by
defining the two-body equal-time NBS wave functions,
and derive the interaction potential for the charmonium.
In the last half of the section, we explain the derivation
of the p-wave excitation energy from the Schrödinger’s
equation and from the meson spectrum, and then, we
define the mass of the charm quark quantum from the
excitation energies from those two. Next, in Section ??,
we extend the above method for the charmonium to the
Λc baryon. In Section ??, we show the Lattice QCD
setup used in this work. In Section ??, the numerical
results for the charmonium NBS wave functions, the re-
duced potential, Meson spectrum and the charm quark
mass are given. In Section ??, the numerical results for
the Λc baryon will be given, and, the diquark mass will
be determined numerically. Finally, in Section ??, we
will summarize our work and give future prospects.

II. FORMALISM FOR MESONS

A. Effective Schrödinger equation and qq̄ NBS
wave function

In this study, we use LQCD to compute the NBS wave
functions[? ? ] of cc̄ and c-D two-body systems. We
first give the definition of the qq̄ NBS wave function
and demonstrate how to construct the potential using
the wave function. The basis of the NBS wave function,
the four point correlator function (four-point function) ,
is defined as

Meson Baryon
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Introduction : Diquarks (2)
•No direct measurements  ⇦ color confinement
• Naive introduction of quark-diquark interaction & diquark mass

• Some Lattice QCD results
• From	Landau	gauge	fixed	correlator

• Diquark Mass : ~700	[MeV]
• Quark	mass	:	~	340	[MeV]	

• Diquark Size : ~	1.1	[fm]	
• Presence	of	static	quark	(quench)	

• Diquark Size : ~	0.6	[fm]	
• Presence	of	static	quark	(full)

Chiral	limit

𝑚! ≃ 156 𝑀𝑒𝑉

背景:diquark(2)
• LQCDの先⾏結果は限定的

• Diquark質量
uLandauゲージ固定したdiquarkの⼆点関数を計算

• これは質量の⼀つの定義を与える

• Diquark質量 ~700 [MeV] , (同様に求めたQuark質量 ~ 340 [MeV] )

• Diquark size
uカラーソースとしてstatic quarkを置きcolor singlet化(quench)

• Diquark Size : ~ 1.1 [fm] 

• Latticeの⽬が荒く、Lattice sizeが⼩さい

ustatic quark を置く⼿法のfull QCD計算( &! ≃ 156 +,-)
• Diquark Size ~ 0.6 [fm]

Øいずれも計算の都合でstatic quarkを導⼊

4

Landau gauge fixed

t
M. Hess, et. al.PRD 58 (1998) 

background gauge field

rC. Alexandrou, et.al PRL 97, (2006) 
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※Chiral	limitでの値
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HAL QCD method and the Kawanai-Sasaki method

•HALQCD method : Hadron-Hadron pot. from LQCD
• Potential reproduces the equal-time NBS wave func. from LQCD

• And the scattering phase shift

• Application to the quark-antiquark system
• Naive choice of quark mass

• Kawanai-Sasaki method
• Quark mass determined from spin-spin interaction and hyp. splitting
• Not applicable to quark-(scalar)diquark system (No spin-spin interaction)

ØWe propose an alternative
• Extend HALQCD method to quark-diquark system

※Nambu-Bethe-Salpeter
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Aim of our current works 
• Investigate the interaction and mass of diquarks

• Consider charmed baryon Λc(udc)
Øheavy quark acts like a spectator -> Diquark enhanced

• Consider iso-scalar scalar diquark (0!)



strategy

S-wave NBS wf.

potential

P-wave excitation E

HAL QCD method

Schrödinger Eq.

Hadron 2pt function

spectrum
Demand 

P-wave excitation E
to be equal

3

Representation 0−+ 1−− 0++ 1++ 1+−

operator q̄1γ5q2 q̄1

[
1
3

∑

i=1,2,3

γi

]
q2 q̄1q2 q̄1

[
1
3

∑

i=1,2,3

γ5γi

]
q2 q̄1



1
3

∑

i,j=1,2,3 (i "=j)

γiγj



 q2

TABLE I. The interpolating field operators for mesons. Top row denotes the representations distinguished by JPC .

expansion in the leading order. As a result, we arrive at
the following equation,

−∇2φΓ(r)

2µ
+ UΓ(r)φΓ(r) = EΓφΓ(r). (6)

Here, we simply write the leading order term U (0)
Γ (r) as

UΓ(r).
The determined quantities in this equation are the s-

wave wave function φΓ(r) and the meson mass MΓ. Con-
versely, the undetermined quantities are the quark mass
mq and the potential UΓ(r). Therefore, we solve the
equation Eq.(6) for UΓ(r). The result is,

∇2φΓ(r)

φΓ(r)
= mq {UΓ(r)− EΓ} . (7)

This formula allows us to determine the potential from
the wave function. However, at this stage, mq is not
yet determined. For the sake of clarity, we will refer to

−∇2φΓ(r)
φΓ(r)

as the reduced potential from now on.

A new constraint is needed to determine the quark
masses from equation Eq.(7). For example, Kawanai and
Sasaki derived the constraint from the asymptotic be-
havior of the spin-dependent part derived from meson’s
wave function [10]. In this section, we review the Kawai-
Sasaki method. Separating the two cases, PS(Γ = γ5)
and V (Γ = 1

3

∑
i=1,2,3 γi), we have the following from

Eq.(6).

∇2φΓ(r)

φΓ(r)
=






mc

{
Vconf (r)− 3

4Vss(r)− EPS

}
(PS)

mc

{
Vconf (r) +

1
4Vss(r)− EV

}
(V)

.(8)

Here Vconf (r) denotes the spin independent part (con-
finement part) and Vss(r) the spin dependent part whose
functional forms are common to the singlet and triplet
channels. We obtain,

∇2φV (r)

φV (r)
− ∇2φPS(r)

φPS(r)
= mc {Vss(r)−∆Ehyp} . (9)

Here, the spin dependent potential Vss(r) is considered
to be short-ranged (δ function like). At the short-range
region corresponding to the high energy scale, QCD is
asymptotically free [18, 19] and the perturbation theory
holds good. And, in fact, the potential obtained from
the one-gluon exchange diagram which is the leading con-
tribution of the perturbation can be considered a good

approximation. Since the spin-dependent part of the one-
gluon exchange potential is short-ranged, it is reasonable
to expect Vss(r) to be short-range manner as well[20–22].
Based on the discussions above, the reduced potentials

behaves as follows at large distances,

lim
r→∞

{
∇2φV (r)

φV (r)
− ∇2φPS(r)

φPS(r)

}
= mc∆Ehyp. (10)

Here, ∆Ehyp ≡ EV −EPS is the hyperfine splitting. Con-
sidering the hyperfine splitting to be equivalent to that
obtained from hadron spectrum, charm quark mass mc

is determined. This is the K-S method[10–12].
The K-S method is an effective way to calculate the

quark mass from LQCD. However, the method can only
be used for systems with spin triplet and singlet states,
that is the mesons. In the case of the quark-diquark
system, we cannot use the method since there are no
spin triplet and singlet. Therefore, we request that the
Schrödinger equation reproduces the p-wave excitation
energy calculated from the baryon spectrum to determine
the diquark mass.

B. Meson spectrum from LQCD

In this study, we use the two point correlation func-
tions (two-point functions) of meson and baryon in order
to evaluate the spectrum. Therefore, we show how to
implement the two-point in LQCD, and, from this im-
plementations, we show how to derive the spectrum. To
begin, considering the two-point function of a meson, the
operator of the meson is defined as M(x, t) and the two-
point function is defined as

CM (x, t) ≡
〈
M(x, t)M†(0, 0)

〉
, (11)

where 〈·〉 denotes the expectation value. The mass is eval-
uated from the propagation in the time-direction from
the source (= 0) to the the sink. To project the two-
point function to the CoM frame, we construct the time-
direction correlation function (Green’s function ) gM (t)
by integrating the two-point function over space as fol-
lows

gM (t) ≡
∑

x∈V

CM (x, t). (12)

Since we are taking a periodic boundary condition (pe-
riod T ) in the time direction now, we get the functional
form

gM (t) =
∞∑

n=0

Ane
−Mn

T
2 cosh(Mn(t−

T

2
)). (13)

Quark-Diquark Interaction potential and diquark mass from Lattice QCD

Kai Watanabe∗ and Noriyoshi Ishii
Research Center for Nuclear Physics, Osaka University, Japan
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In this study, we investigate two-body potentials for the charmonium (cc̄) and charm-[ud]Diquark
(c-D) systems using Lattice Quantum Chromo Dynamics (LQCD). The potentials and the masses
of charm quark and diquark are determined so as to reproduce the wave function and energy levels
calculated from LQCD. First, the s-wave Nambu-Bethe-Salpeter (NBS) wave function for the cc̄
and c-D two-body systems were calculated from LQCD. The NBS wave functions of the s-wave
are assumed to be solutions of the non-relativistic Schrödinger equations for cc̄ and c-D two-body
systems. The interaction potential between cc̄ and that between c-D appearing in the Schrödinger
equation were determined by inversely solving the equation using the wave function as an input.
However, the mass appearing in the kinetic term of the Schrödinger equation is undetermined at this
point. In order to determine the mass, we demanded the p-wave excitation energy to be equal to that
obtained from the hadron two-point functions. The above procedure enables us to determine the
charm quark and the diquark mass. We use PACS-CS 2+1 flavor dynamical gauge configurations
with pion mass mπ ! 700[MeV] for the LQCD simulation. The lattice spacing for the setup is
1/a ! 2.194 [GeV] with the spatial extent is La ! 2.88 [fm]. We obtained the mass of the charm
quark mc ! 1.9[GeV] and that of the Diquark mD ! 1.1[GeV]. The charm quark mass agrees with
prior works.

I. INTRODUCTION

The structure of hadron as a quark many-body system
is a theme that is relevant not only to hadron physics
but also to astrophysics and particle theory. In partic-
ular, there is a scenario in which a baryon is composed
of three quarks, two of which are bound to form a hy-
pothetical two-quark bound state, and the third quark
binds to it. Such a two-particle bound state is called a
diquark [1, 2]. The diquark model can explain several
exotic hadron levels, or provide an explanation for levels
that are suggested by theory but not yet confirmed by
experiments[3].

However, since diquarks are colored particles, they can-
not be observed directly due to the color confinement,
and so diquarks have been treated exclusively as vir-
tual particles. Recent developments in Lattice Quan-
tum Chromo Dynamics (LQCD) have led to attempts
to elucidate the nature of diquarks, and in some limited
circumstances, its spatial extent [4], q-D interactions [5]
and a gauge dependent mass [6] were considered.

Also, the HALQCD method[7, 8], which has been used
to calculate Hadron interactions, was extended by Ikeda
and Iida to inter quark systems to calculate the potential
between a quark-antiquark pair with a finite mass[9]. In
addition, for quark mass that cannot be measured due to
confinement, Kawanai and Sasaki impose a constraint on
the mass from the the hyperfine splitting of the quark-
antiquark system, and determined the mass[10–12].

In this study, we wish to extend the above-mentioned
wave-function-equivalent potential method to the quark-
diquark(q-D) system to measure the q-D interaction
and the mass of the diquark. Specifically, we consider

∗ kaiw@rcnp.osaka-u.ac.jp

the charm-[ud]diquark(c-D) system. This system corre-
sponds to baryon Λc, and the binary s-wave ground state
of c-D corresponds to Λc(

1
2

+
). The reason for choosing

Λc is that the kinematics of light and heavy quarks are
isolated inside a singly charmed baryon, due to the heavy
charm quark mass, suggesting a large contribution from
the diquark[13].
This paper is organized as follows. First, in the first

half of Section ??, we give the definition of two-body
equal-time NBS wave functions, construct a two-body
effective quantum mechanics from the NBS wave func-
tion, and explain how to derive the interaction potential.
At the same time, we define the masses of quarks and
diquarks in this quantum mechanical framework. In the
second half of Section ??, we present the original method
for determining the masses of quark and diquark. In the
IV section, we present the LQCD setup and set of param-
eters used in the paper. In the first half of Section VI, we
summarize the hadron masses obtained from the setup of
the present study. In the second half of the section, we
summarize the numerical results for the qq̄ system NBS
wave function, and the reduced potential, charm quark,
and diquark masses. In the final section, we summarize
the results.

P-wave excitation E



Quark−diquark NBS wave function for Λ"(1#/2)
• The equal-time NBS wave function

• In Lattice QCD, extracted from 4pt. func. 

• Projection to parity + state

• In large time-region

• Projection to C.o.M. and s-wave (A^+_1)

gM(t) ≡
∑

x∈V

〈
M(x, t)M†(0, 0)

〉
, (17)

gM(t) ≡
∑

x∈V

〈
M(x, t)M†(0, 0)

〉
" A0e

−M0
T
2 cosh(M0(t−

T

2
)). (18)

gM(t) " A0e
−M0

T
2 cosh(M0(t−

T

2
)). (19)

gM(t) " A0e
−M0

T
2 cosh(M0(t−

T

2
)). (20)

gM(t) =
∞∑

n=0

Ane
−Mn

T
2 cosh(Mn(t−

T

2
)). (21)

gM(t) =
∞∑

n=0

Ane
−Mn

T
2 cosh(Mn(t−

T

2
)) " A0e

−M0
T
2 cosh(M0(t−

T

2
)). (22)

gM(t) ≡
∑

x∈V

CM(x, t). (23)

I. BARYON

ψαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β

(
0;

1

2

)
|0〉 , (24)

ψαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (25)

J cud,α (1/2) = {[uCγ5d] c3,α′}† γα′α (26)

3

Diquark operator

III. BARYON NBS WAVE

Baryon NBS wave function

ψαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β

(
0;

1

2

)
|0〉 , (26)

NBS wave function 2

ψ(x− y, t) ≡ 〈0|Da(x, t)ca,α(y, t)
∣∣Λc

(
1−/2

)〉
, (27)

Diquark Op.

Dc(x) ≡ εabcua(x)Cγ5db(x), (28)

ψαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (29)

J cud,α (1/2) =
∑

x,x′,x′′

{[u(x, tsrc = 0)Cγ5d(x
′, tsrc = 0)] c(x′′, tsrc = 0)α′}† γα′α (30)

ψ(x,y, t) ≡
[
1 + γ5

2

]

α,β

〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (31)

Representation Λ (J = 1/2) Σ (J = 1/2) Λ (J = 3/2)

operator [q1Cγ5q2] q3,α [q1Cγ5q2] q1,α [q1Cγiq2] q3,α

TABLE II. The interpolating field operators used for Baryons.

IV. BARYON GREEN’S FUNCTION

C
B, 12
α,β (x, t) ≡

〈
Bα(x, t)Bβ(0, 0)

〉
, (32)

g
B, 12
α,β (t) ≡

∑

x

〈
Bα(x, t)Bβ(0, 0)

〉
, (33)

4

III. MESON SPECTRUM

〈vss〉 =
∫
φ∗
Γ(r)vss(r)φΓ(r)

(25)

〈vLS〉 =
∫
φ∗
Γ(r)vLS(r)φΓ(r).

IV. BARYON NBS WAVE

Cαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β

(
0;

1

2

)
|0〉 , (26)

Cαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (27)

J cud,α (1/2) =
∑

x,x′,x′′

{[u(x, tsrc = 0)Cγ5d(x
′, tsrc = 0)] c(x′′, tsrc = 0)α′}† γα′α (28)

P+ projection

ψ(x,y, t) ≡
[
1 + γ5

2

]

α,β

〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (29)

NBS wave function

ψ(x,y, t) = ψ(x,y) exp(−MΛct) (30)

φ(r) =
∑

x

ψ(x+ r,x) (31)

A+
1 projectionl

φ(r) →
A+

1

φ(r) (32)

Non-local potential

−∇2φ(r)

2µ
+

∫
d3r′U(r, r′)φ(r′) = Eφ(r). (33)

4

III. MESON SPECTRUM

〈vss〉 =
∫
φ∗
Γ(r)vss(r)φΓ(r)

(25)

〈vLS〉 =
∫
φ∗
Γ(r)vLS(r)φΓ(r).

IV. BARYON NBS WAVE

Cαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β

(
0;

1

2

)
|0〉 , (26)

Cαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (27)

J cud,α (1/2) =
∑

x,x′,x′′

{[u(x, tsrc = 0)Cγ5d(x
′, tsrc = 0)] c(x′′, tsrc = 0)α′}† γα′α (28)

P+ projection

C(x,y, t) ≡
[
1 + γ5

2

]

α,β

〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (29)

C(x,y, t) ≡
[
1 + γ5

2

]

α,β

Cαβ(x,y, t) (30)

NBS wave function

C(x,y, t) = ψ(x,y) exp(−MΛct) (31)

φ(r) =
∑

x

ψ(x+ r,x) (32)

A+
1 projectionl

φ(r) →
A+

1

φ(r) (33)

4

Λ)(1*/2) mass

III. BARYON NBS WAVE

Baryon NBS wave function

ψαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β

(
0;

1

2

)
|0〉 , (26)

NBS wave function 2

ψ(x− y) ≡ 〈0|Da(x)ca,α(y)
∣∣Λc

(
1+/2

)〉
, (27)

ψ(x,y) ≡ 〈0|Da(x)ca(y)
∣∣Λc

(
1+/2

)〉
, (28)

ψ(x,y) ≡ 〈0|D(x)c(y)
∣∣Λc

(
1+/2

)〉
, (29)

Diquark Op.

Dc(x) ≡ εabcua(x)Cγ5db(x), (30)

ψαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (31)

J cud,α (1/2) =
∑

x,x′,x′′

{[u(x, tsrc = 0)Cγ5d(x
′, tsrc = 0)] c(x′′, tsrc = 0)α′}† γα′α (32)

ψ(x,y, t) ≡
[
1 + γ5

2

]

α,β

〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (33)

Representation Λ (J = 1/2) Σ (J = 1/2) Λ (J = 3/2)

operator [q1Cγ5q2] q3,α [q1Cγ5q2] q1,α [q1Cγiq2] q3,α

TABLE II. The interpolating field operators used for Baryons.

4

𝛬𝑐 (1/2) operator

III. MESON SPECTRUM

〈vss〉 =
∫
φ∗
Γ(r)vss(r)φΓ(r)

(25)

〈vLS〉 =
∫
φ∗
Γ(r)vLS(r)φΓ(r).

IV. BARYON NBS WAVE

Cαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β

(
0;

1

2

)
|0〉 , (26)

Cαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (27)

J cud,α (1/2) =
∑

x,x′,x′′

{[u(x, tsrc = 0)Cγ5d(x
′, tsrc = 0)] c(x′′, tsrc = 0)α′}† γα′α (28)

P+ projection

C(x,y, t) ≡
[
1 + γ0

2

]

α,β

〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (29)

C(x,y, t) ≡
[
1 + γ0

2

]

α,β

Cαβ(x,y, t) (30)

NBS wave function

C(x,y, t) = ψ(x,y) exp(−MΛct) (31)

φ(r) =
∑

x

ψ(x+ r,x) (32)

A+
1 projectionl

φ(r) →
A+

1

φ(r) (33)

4



Schrödinger	equation
•Demand NBS wave func. to satisfy Schrödinger equation

• Derivative expansion of non-local potential (to the lowest)

• Define “pre-potential” from the NBS wave function

• Evaluate the spectrum from pre-potentials
• Demand μ to reproduce the p-wave excitation energy from 2pt func.

Binding energy

E ≡ MΛc −mc −mD (34)

reduced mass

Representation Λ (J = 1/2) Σ (J = 1/2) Λ (J = 3/2)

operator [q1Cγ5q2] q3,α [q1Cγ5q2] q1,α [q1Cγiq2] q3,α

TABLE II. The interpolating field operators used for Baryons.

V. BARYON GREEN’S FUNCTION

C
B, 12
α,β (x, t) ≡

〈
Bα(x, t)Bβ(0, 0)

〉
, (35)

g
B, 12
α,β (t) ≡

∑

x

〈
Bα(x, t)Bβ(0, 0)

〉
, (36)

g
B, 32
α,µ;β,ν(t) ≡

∑

x

〈
Rα,µ(x, t)Rβ,ν(0, 0)

〉
. (37)

gBaryon(t) # A+ exp(−M+(T − t)) + A− exp(−M−(T − t)) (38)

gB(t) # A exp(−MBt) (39)

VI. NUMERICAL RESULTS

A. Mesons

∆E(spec)
sp = 0.602 (180) [GeV] (40)

5

Binding energy

E ≡ MΛc −mc −mD (34)

reduced mass

µ = mDmc/(mD +mc) (35)

Representation Λ (J = 1/2) Σ (J = 1/2) Λ (J = 3/2)

operator [q1Cγ5q2] q3,α [q1Cγ5q2] q1,α [q1Cγiq2] q3,α

TABLE II. The interpolating field operators used for Baryons.

V. BARYON GREEN’S FUNCTION

C
B, 12
α,β (x, t) ≡

〈
Bα(x, t)Bβ(0, 0)

〉
, (36)

g
B, 12
α,β (t) ≡

∑

x

〈
Bα(x, t)Bβ(0, 0)

〉
, (37)

g
B, 32
α,µ;β,ν(t) ≡

∑

x

〈
Rα,µ(x, t)Rβ,ν(0, 0)

〉
. (38)

gBaryon(t) # A+ exp(−M+(T − t)) + A− exp(−M−(T − t)) (39)

gB(t) # A exp(−MBt) (40)

VI. NUMERICAL RESULTS

A. Mesons

∆E(spec)
sp = 0.602 (180) [GeV] (41)

5

Binding E

Reduced mass

Binding energy

E ≡ MΛc −mc −mD (34)

reduced mass

µ = mDmc/(mD +mc) (35)

expansion

UΓ(r, r
′) =

[ ∞∑

n=0

U (n)
Γ (r)∇n

]
δ(r − r′). (36)

def

UΓ(r) = U (0)
Γ (r) (37)

U(r, r′) = U(r)δ(r − r′) (38)

+ U (1)(r)∇δ(r − r′) (39)

+ U (2)(r)∇2δ(r − r′) (40)

+ · · · . (41)

−∇2φ(r)

2µ
+ U(r)φ(r) = Eφ(r). (42)

Representation Λ (J = 1/2) Σ (J = 1/2) Λ (J = 3/2)

operator [q1Cγ5q2] q3,α [q1Cγ5q2] q1,α [q1Cγiq2] q3,α

TABLE II. The interpolating field operators used for Baryons.

V. BARYON GREEN’S FUNCTION

C
B, 12
α,β (x, t) ≡

〈
Bα(x, t)Bβ(0, 0)

〉
, (43)

5

Binding energy

E ≡ MΛc −mc −mD (34)

reduced mass

µ = mDmc/(mD +mc) (35)

expansion

UΓ(r, r
′) =

[ ∞∑

n=0

U (n)
Γ (r)∇n

]
δ(r − r′). (36)

def

UΓ(r) = U (0)
Γ (r) (37)

U(r, r′) = U(r)δ(r − r′) (38)

+ U (1)(r)∇δ(r − r′) (39)

+ U (2)(r)∇2δ(r − r′) (40)

+ · · · . (41)

−∇2φ(r)

2µ
+ U(r)φ(r) = Eφ(r). (42)

NBS function -¿ potential

−∇2φ(r)

φ(r)
= 2µ {U(r)− E} . (43)

Representation Λ (J = 1/2) Σ (J = 1/2) Λ (J = 3/2)

operator [q1Cγ5q2] q3,α [q1Cγ5q2] q1,α [q1Cγiq2] q3,α

TABLE II. The interpolating field operators used for Baryons.

5

Pre-potential

Non-local potential

III. MESON SPECTRUM

〈vss〉 =
∫
φ∗
Γ(r)vss(r)φΓ(r)

(25)

〈vLS〉 =
∫
φ∗
Γ(r)vLS(r)φΓ(r).

IV. BARYON NBS WAVE

ψαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β

(
0;

1

2

)
|0〉 , (26)

ψαβ(x,y, t) ≡ 〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (27)

J cud,α (1/2) =
∑

x,x′,x′′

{[u(x, tsrc = 0)Cγ5d(x
′, tsrc = 0)] c(x′′, tsrc = 0)α′}† γα′α (28)

P+ projection

ψ(x,y, t) ≡
[
1 + γ5

2

]

α,β

〈0|Di(x, t)ci,α(y, t)J cud,β (1/2) |0〉 , (29)

NBS wave function

ψ(x,y, t) = ψ(x,y) exp(−Mt) (30)

φ(r) =
∑

x

ψ(x+ r,x) (31)

A+
1 projectionl

φ(r) →
A+

1

φ(r) (32)

Non-local potential

−∇2φ(r)

2µ
+

∫
d3r′U(r, r′)φ(r′) = Eφ(r). (33)

4

Binding energy

E ≡ MΛc −mc −mD (34)

reduced mass

µ = mDmc/(mD +mc) (35)

expansion

UΓ(r, r
′) =

[ ∞∑

n=0

U (n)
Γ (r)∇n

]
δ(r − r′). (36)

def

UΓ(r) = U (0)
Γ (r) (37)

U(r, r′) = U(r)δ(r − r′) (38)

+ U (1)(r)∇δ(r − r′) (39)

+ U (2)(r)∇2δ(r − r′) (40)

+ · · · . (41)

−∇2φ(r)

2µ
+ U(r)φ(r) = Eφ(r). (42)

Representation Λ (J = 1/2) Σ (J = 1/2) Λ (J = 3/2)

operator [q1Cγ5q2] q3,α [q1Cγ5q2] q1,α [q1Cγiq2] q3,α

TABLE II. The interpolating field operators used for Baryons.

V. BARYON GREEN’S FUNCTION

C
B, 12
α,β (x, t) ≡

〈
Bα(x, t)Bβ(0, 0)

〉
, (43)

5

LS force, etc.

𝑐𝐷 Elastic region

Inelastic region
Σ) + 𝜋



Lattice QCD setup
• PACS-CS 2+1 flavor dynamical configuration (#conf =399)
• Iwasaki gauge action
• Improved Wilson quark action
• Lattice size & lattice spacing

• Relativistic heavy quark action for charm quark

•Wall source for all quarks
• Fixed to Coulomb gauge

erated by Monte Carlo method is Nconf = 399 for this set up. Relativistic

heavy quark actions(RHQ)[?] is used for charm quarks in order to reduce

the lattice artifacts coming from the lattice spacings. Numerical simulations

were carried out at β = 1.9, corresponding to the spacing a ! 0.08995 [fm],

equivalent to an energy cut off of 1/a ! 2.194 [GeV] on a V × T = 323 × 64

lattice[14]. The corresponding physical size of the lattice spatial direction is

La ! 3(fm). The hopping parameters for quarks are chosen so as to be con-

sistent with previous works using the same gauge configurations. Those are,

κu,d = 0.13700 for u, d quarks, κs = 0.13640 for s quark and κc = 0.10959947

for charm quark respectively[14, 15].

表 (4.2)に本研究で用いたダイナミカルクォークのパラメータをまとめて
示した。また、表??にはチャームクォークのソルバーの条件を示した。

β κu,d κs configurations source points

1.90 0.13700 0.136400 399 t=0,16,32,48

Table 4.1: 今回の計算に用いたクォークソルバーのホッピングパラメータ。
configurationはゲージ配位の数。

κc ν rs cB cE

0.10959947 1.1450511 1.1881607 1.9849139 1.7819512

Table 4.2: 今回の計算に用いたクォークソルバーのホッピングパラメータ。
configurationはゲージ配位の数。

4.2 Two point functions

ハドロン質量をLQCDで測るためには二点関数を計算し、その時間依存性か
ら質量を計算する。ある中間子の二点関数 (G($x, t))は、中間子の演算子 M̂
と真空状態 |0〉を用いて、以下のように定義される。

GM($x, t) ≡ 〈0|T
{
M̂(x, t)M̂†(0, 0)

}
|0〉 . (4.1)

48

erated by Monte Carlo method is Nconf = 399 for this set up. Relativistic

heavy quark actions(RHQ)[?] is used for charm quarks in order to reduce

the lattice artifacts coming from the lattice spacings. Numerical simulations

were carried out at β = 1.9, corresponding to the spacing a ! 0.08995 [fm],

equivalent to an energy cut off of 1/a ! 2.194 [GeV] on a V × T = 323 × 64

lattice[14]. The corresponding physical size of the lattice spatial direction is

La ! 3(fm). The hopping parameters for quarks are chosen so as to be con-

sistent with previous works using the same gauge configurations. Those are,

κu,d = 0.13700 for u, d quarks, κs = 0.13640 for s quark and κc = 0.10959947

for charm quark respectively[14, 15].

表 (4.2)に本研究で用いたダイナミカルクォークのパラメータをまとめて
示した。また、表??にはチャームクォークのソルバーの条件を示した。

β κu,d κs configurations source points

1.90 0.13700 0.136400 399 t=0,16,32,48

Table 4.1: 今回の計算に用いたクォークソルバーのホッピングパラメータ。
configurationはゲージ配位の数。

κc ν rs cB cE

0.10959947 1.1450511 1.1881607 1.9849139 1.7819512

Table 4.2: 今回の計算に用いたクォークソルバーのホッピングパラメータ。
configurationはゲージ配位の数。

4.2 Two point functions

ハドロン質量をLQCDで測るためには二点関数を計算し、その時間依存性か
ら質量を計算する。ある中間子の二点関数 (G($x, t))は、中間子の演算子 M̂
と真空状態 |0〉を用いて、以下のように定義される。

GM($x, t) ≡ 〈0|T
{
M̂(x, t)M̂†(0, 0)

}
|0〉 . (4.1)

48

, 𝑎 ≅ 0.0907 [fm]

𝑀" ≃ 700 [MeV]

Ukita et.al. (PACS-CS collaboration) PRD 79 (2009)

Namekawa et.al. (PACS-CS collaboration) PRD 87 (2013)



Numerical	results	of	NBS	wave	functions	and	pre-potentials

• Fit the pre-potential at 0.3 ≤ r ≤ 1.0 fm
• Fit function ; Cornell function

• log term is present in charmonium
• finite quark mass effect 

V. BARYON GREEN’S FUNCTION

C
B, 12
α,β (x, t) ≡

〈
Bα(x, t)Bβ(0, 0)

〉
, (44)

g
B, 12
α,β (t) ≡

∑

x

〈
Bα(x, t)Bβ(0, 0)

〉
, (45)

g
B, 32
α,µ;β,ν(t) ≡

∑

x

〈
Rα,µ(x, t)Rβ,ν(0, 0)

〉
. (46)

gBaryon(t) " A+ exp(−M+(T − t)) + A− exp(−M−(T − t)) (47)

gB(t) " A exp(−MBt) (48)

VI. NUMERICAL RESULTS

A. Mesons

∆E(spec)
sp = 0.602 (180) [GeV] (49)

B. Baryons

Ffit(r) = −A

r
+Br + C log(r) +D (50)

Ffit(r) = A1 exp(−B1r
2) + A2 exp(−B2r

2) + C (51)

∇2φ(r)− 2µ [U(r)− E]φ(r) = 0. (52)

mc = 1.823 (19) [GeV](singlet),mc = 1.605 (42) [GeV](triplet), while the K-S method

gives mKS
c = 1.901 (11) [GeV]

mc = ∆ẼSch
s,p /∆E(spec)

s,p

6

TABLE III. The masses of mesons for this setup. The tensor (1+−) representation for flavored

mesons are omitted since the charge conjugations are ill defined in those sectors.

energy [GeV]

representation \ flavor composition cū cs̄ cc̄

0−+ 2.0157 (16) D 2.0660 (5) Ds 3.049 (2) ηc

1−− 2.1790 (96) D∗ 2.2245 (27) D∗
s 3.168 (23) J/ψ

0++ 2.5213 (1000) D∗
0 2.5737 (130) D∗

s0 3.559 (125) χc0

1++ 2.6917 (2072)D1 2.7278 (1600) Ds1 3.642 (124) χ1

1+− - - 3.651 (130)hc

VI. NUMERICAL RESULTS

A. Mesons

∆E(spec)
sp = 0.602 (180) [GeV] (52)

B. Baryons

Ffit(r) = −A

r
+Br + C (53)

Ffit(r) = −A

r
+Br + C log(r) +D (54)

Ffit(r) = A1 exp(−B1r
2) + A2 exp(−B2r

2) + C (55)

∇2φ(r)− 2µ [U(r)− E]φ(r) = 0. (56)

7
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Eigen	value	problem
• Solve eigenvalue problem for the pre-potential

• p-wave “pre-excitation energy”
pre-potential

Binding energy

E ≡ MΛc −mc −mD (34)

reduced mass

µ = mDmc/(mD +mc) (35)

expansion

UΓ(r, r
′) =

[ ∞∑

n=0

U (n)
Γ (r)∇n

]
δ(r − r′). (36)

def

UΓ(r) = U (0)
Γ (r) (37)

U(r, r′) = U(r)δ(r − r′) (38)

+ U (1)(r)∇δ(r − r′) (39)

+ U (2)(r)∇2δ(r − r′) (40)

+ · · · . (41)

−∇2φ(r)

2µ
+ U(r)φ(r) = Eφ(r). (42)

NBS function -¿ potential

−∇2φ(r)

φ(r)
= 2µ {U(r)− E} . (43)

radial Schrödinger Equation

− ∂2

∂r2
χl(r) + 2µ [U(r)− El]χl(r) +

l(l + 1)

r2
χl(r) = 0.

with

φ0(r) = φ(r), E0 = E (44)
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FIG. 12. The numerically obtained wave functions using the
pre-potential fitted to the Cornell type function. We also
plotted the NBS wave function (black circles) obtained from
LQCD for comparison.

C. Eigen value problem and the Diquark mass

Using the above obtained fit results, we solve the
Schrd̈inger equation Eq. (39) and evaluate the eigenval-
ues. For each series, the solutions for the s-wave and
p-wave are obtained as shown in Fig.12, where we find
overall agreement between the s-wave numerical results
and the LQCD data. The solution for SeriesIII best re-
produces the LQCD data, thus, we use this series here
after. The p-wave excitation pre-energy for SeriesIII is,
ẼPW = 2µ (Ep − Es) = 0.661(7) GeV2.

Substituting the result of the eigenvalue problem and
Mc obtained in Section V to Eq. (24) and Eq. (25), we
obtain the diquark mass as MD = 1.220(45) [GeV]. In
Fig.13, we show MD compared to the ρ meson mass
Mρ = 1.098(5) [GeV] and the constituent mass 2

3MN =
1.049(12) [GeV] where we find that MD is slightly larger
than both which is consistent with what is expected in
the quark models. Also, the same trend is seen in the
result from the Landau gauge fixed correlation functions
in the chiral limit[18]. Thus our results are in line with
the prior work.

VII. COMPARISON OF c-D AND c-c̄
POTENTIALS

Using the masses of the diquark and the charm quark,
and also the pre-potentials, we are able to evaluate the
potentials for the c-D system and the c-c̄ system as,

Vcc̄(r) = Ṽcc̄(r)
Mc

for c-c̄ and VcD(r) = ṼcD(r)
2µcD

for c-
D system respectively. In Fig.14, we show the spin-
independent part of the c-c̄ potential and c-D potential,

1.00 1.10 1.20 1.30
mass	[GeV]

! meson	mass

!
" Nucleon	mass

!!

FIG. 13. Diquark mass. Mρ and 2
3MN are also shown for

comparison.

and in Table VIII, we have summarized the parameters
for the potentials. In the figure, we find that the Cornell
type and the Cornell-plus-log type function give almost
identical results for the c-c̄ potential.
Though the c-D potential and the c-c̄ potential are

qualitatively similar, they quantitatively differ in the fol-
lowing points:

• The c-c̄ potential has about three times stronger
attraction than the c-D potential which seems to
be consistent to the result from the static QQ̄ and
QQQ potentials[48] if we expect that the q-D po-
tential is naively a certain limit of the three quark
potential.

• The string tension for the c-c̄ potential is about
three-fourth of the c-D potential thus the linear
confinement is stronger in the latter.

• As in Table VIII, the c-D potential gives the
Sommer scale of r0 = 0.446(6) [fm] consistent to
the value 0.437(7) [fm] obtained from the Wilson
Loop[36]. On the other hand, the Sommer scale for
the c-c̄ potential is about 10% less than the value
from the Wilson Loop which may be a consequence
of finite mass effect.

VIII. CONCLUSIONS

In this work, we have presented a novel method to
evaluate the quark-diquark interaction potential and the
diquark mass from LQCD. The diquark mass observed
in this work is mD = 1.220(45) [GeV] which is slightly
above both the ρ meson mass mρ = 1.098(5) [GeV] and
2mN/3 = 1.049(12) [GeV], as expected from effective
theories for hadrons. When applied to the charmonium,
our method yields charm quark mass which is consistent
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VI. NUMERICAL RESULTS FOR c-D SYSTEM

A. c-D levels

Similar to the meson case, we extract the baryon mass
from the two-point correlator. For the spin 1

2 baryon, the
two-point correlator is defined as,

CB( 1
2
±)(t) ≡ P±

αβ

1

V

∑

x

〈
0
∣∣T

[
Bα(x, t)Bβ(0)

]∣∣ 0
〉
, (40)

where P±
αβ = 1±γ0

2 is the parity projection, Bα(x, t) is the

baryon spinor operator and Bα(x, t) denoting the Dirac
conjugate respectively. For the spin 3

2 baryon, the two-
point correlator is defined as,

CB( 3
2
±)(t) ≡ P±

αβP
ij
3
2

× 1

V

∑

x

〈
0
∣∣T

[
Bα,i(x, t)Bβ,j(0)

]∣∣ 0
〉
.

(41)

Here, Bα,i(x, t) is the vector-spinor operator for spin 3/2

baryon and P ij
3
2

= δij − 1
3γ

iγj is the projection opera-

tor to the spin 3/2 state in the rest frame[43–46]. The
projection is needed to whip out the effects of the spin
1/2 state coupling to the vector-spinor operator. Same
as the case of meson correlators, the statistical noises are
improved by using the symmetries of the time-reversal
and the particle-antiparticle CB(J±)(t) = −CB(J∓)(T−t).
The operator for the Λc baryon in each JP channels are
listed in Table VI.

For baryons, we employ the exponential type effective
mass

Meff(t) = log

(
CB(JP )(t+ 1)

CB(JP )(t)

)
. (42)

In order to extract the mass, the correlator is fitted at
the plateau region with an exponential type function
A exp(−Mt). The result for the effective mass plot is
shown in Fig.8. Despite the large statistical noises in the
negative parity channels, the fits were adequately carried
out with χ2/Nd.o.f < 1.0 for both negative and positive
parity channels. The fit results are summarized in Ta-
ble VII. Similarly, the mass of the Σc(

1
2

+
) baryon and the

nucleon are obtained as MΣc = 2.794(3)[GeV] and MN =
1.574(18) [GeV] respectively. Thus, in this setup, all the
channels of Λc baryon are bellow Σc + π threshold and
considered to be bound. From the obtained Λc masses,
the LS averageMp = 1

3

(
2M(3−/2) +M(1−/2)

)
= 1.447(3)

[GeV] and the p-wave excitation energy∆Es,p = 0.457(7)
GeV follow respectively.

B (J) Λc

(
1
2

)
Λc

(
3
2

)

operator
[
qT1 Cγ5q2

]
q3,α

[
qT1 Cγ5γµq2

]
(γ5)αα′q3,α′

TABLE VI. The interpolating field operators used for the Λc

baryon.

TABLE VII. The Λc baryon masses.

JP Mass [GeV] fit range
1
2

+
2.691 (5) 17 ≤ t/a ≤ 24

1
2

−
3.060 (9) 9 ≤ t/a ≤ 16

3
2

−
3.192 (8) 11 ≤ t/a ≤ 15

B. c-D NBS wave function and the pre-potential

In order to obtain the NBS wave function, we first
consider the following four-point correlator for Λc(

1
2 ):

CΛc(x− y, t) (43)

≡ 1

V

∑

∆

〈
0
∣∣T

[
Dc(x+∆, t)cc(y +∆, t) · J Λc(0)

]∣∣ 0
〉
.

Here, Dc(x, t) is the [ud] scalar diquark operator defined
as

Dc(x, t) ≡
∑

a,b

εabcu
T
a (x, t)Cγ5db(x, t). (44)

The Levi-Civita symbol εabc is introduced to set the di-
quark’s color to 3̄, and Cγ5 to set the spin-parity to
JP = 0+. The source operator JΛc(0) is defined as,

JΛc(t) =
1

V 3

∑

x

∑

y

∑

z

[
uT (x, t)Cγ5d(y, t)

]
c(z, t),

(45)
using the wall source after gauge fixing. We utilize the
same parity projection operator as the two-point correla-
tor P±

αβ to separate the positive and the negative parity

states as, CΛ±
c
(x − y, t) = P±CΛc(x − y, t). To sim-

plify the notation, we denote the four-point correlator
for Λc(

1
2

+
) as CΛc(x− y, t).

Similar to the meson case, the four-point correlator is
decomposed as,

CΛc(r, t) =
∑

n

φ(n)Λc
(r, t)ane

−Ent (46)

where φ(n)Λc
(r, t) , an = 〈n|J Λc(0)|0〉 and En denotes the

n-the NBS wave function, overlap to the n-th state and
the n-th energy respectively. We project the NBS wave
function to the s-wave by employing the A+

1 projection
same as in the meson case.
The c-D NBS wave functions in several time slices are

shown in Fig.9. We find that the wave function in each
time slices within the plateau regions converges. Regard-
ing this convergence, we consider the wave function at
t = 17 from now on.
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FIG. 12. The numerically obtained wave functions using the
pre-potential fitted to the Cornell type function. We also
plotted the NBS wave function (black circles) obtained from
LQCD for comparison.

C. Eigen value problem and the Diquark mass

Using the above obtained fit results, we solve the
Schrd̈inger equation Eq. (39) and evaluate the eigenval-
ues. For each series, the solutions for the s-wave and
p-wave are obtained as shown in Fig.12, where we find
overall agreement between the s-wave numerical results
and the LQCD data. The solution for SeriesIII best re-
produces the LQCD data, thus, we use this series here
after. The p-wave excitation pre-energy for SeriesIII is,
ẼPW = 2µ (Ep − Es) = 0.661(7) GeV.

Substituting the result of the eigenvalue problem and
Mc obtained in Section V to Eq. (24) and Eq. (25), we
obtain the diquark mass as MD = 1.220(45) [GeV]. In
Fig.13, we show MD compared to the ρ meson mass
Mρ = 1.098(5) [GeV] and the constituent mass 2

3MN =
1.049(12) [GeV] where we find that MD is slightly larger
than both which is consistent with what is expected in
the quark models. Also, the same trend is seen in the
result from the Landau gauge fixed correlation functions
in the chiral limit[18]. Thus our results are in line with
the prior work.

VII. COMPARISON OF c-D AND c-c̄
POTENTIALS

Using the masses of the diquark and the charm quark,
and also the pre-potentials, we are able to evaluate the
potentials for the c-D system and the c-c̄ system as,

Vcc̄(r) = Ṽcc̄(r)
Mc

for c-c̄ and VcD(r) = ṼcD(r)
2µcD

for c-
D system respectively. In Fig.14, we show the spin-
independent part of the c-c̄ potential and c-D potential,
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FIG. 13. Diquark mass. Mρ and 2
3MN are also shown for

comparison.

and in Table VIII, we have summarized the parameters
for the potentials. In the figure, we find that the Cornell
type and the Cornell-plus-log type function give almost
identical results for the c-c̄ potential.
Though the c-D potential and the c-c̄ potential are

qualitatively similar, they quantitatively differ in the fol-
lowing points:

• The c-c̄ potential has about three times stronger
attraction than the c-D potential which seems to
be consistent to the result from the static QQ̄ and
QQQ potentials[48] if we expect that the q-D po-
tential is naively a certain limit of the three quark
potential.

• The string tension for the c-c̄ potential is about
three-fourth of the c-D potential thus the linear
confinement is stronger in the latter.

• As in Table VIII, the c-D potential gives the
Sommer scale of r0 = 0.446(6) [fm] consistent to
the value 0.437(7) [fm] obtained from the Wilson
Loop[36]. On the other hand, the Sommer scale for
the c-c̄ potential is about 10% less than the value
from the Wilson Loop which may be a consequence
of finite mass effect.

VIII. CONCLUSIONS

In this work, we have presented a novel method to
evaluate the quark-diquark interaction potential and the
diquark mass from LQCD. The diquark mass observed
in this work is mD = 1.220(45) [GeV] which is slightly
above both the ρ meson mass mρ = 1.098(5) [GeV] and
2mN/3 = 1.049(12) [GeV], as expected from effective
theories for hadrons. When applied to the charmonium,
our method yields charm quark mass which is consistent
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D. Eigen value problem and the charm quark mass

Using the above fitted pre-potentials as inputs to the
Schödinger equation Eq.(11), we solve the eigenvalue
problem for the p-wave in order to evaluate the pre-
energy ẼPS,T in the spin singlet sector.

The radial Schödinger equation we solve is the follow-
ing,

[
− 1

r2
d

dr

(
r2

d

dr

)
+

{
Ṽ fit
PS(r)− Ẽl

}
+

l(l + 1)

r2

]
φl(r) = 0.

(39)
Here, Ṽ fit

PS(r) is constructed from the previously obtained

fit results as Ṽ fit
PS(r) = Ṽ fit

0 (r) − 3
4 Ṽ

fit
σ (r). Note that, by

definition, we have φ0(r) = φPS(r) and Ẽ0 = 0, and for
l = 1, φ1(r) = φT(r) and Ẽ1(r) = ẼT which follows from
Eq. (8). To numerically solve the equation, we employ
the Discretized Variable Representation (DVR) method
often used in quantum chemistry[41, 42].

We show the numerical solutions for Eq. (39) in Fig.6.
Firstly, the Cornell type fit overestimates the attraction
resulting in a poor agreement with the lattice data espe-
cially near origin. On the other hand, the Cornell-plus-
log type fit gives good agreement with the lattice data.
On the other hand, for the series, we find that the fit to
SeriesI gives the greatest attraction and the fit to SeriesI
I , and fit to SeriesIII follow. Consequently, the Cornell-
plus-log function fitted to SeriesII best reproduces the
PS, V and spin-averaged NBS wave functions simultane-
ously. Recalling our purpose, we choose the series and the
functional form that gives the best agreement with the
NBS wave function evaluated from LQCD. Our choice
is the Cornell-plus-log type function fitted to SeriesII .
Note that, if we use the pre-potential fitted to all data
points without separating into the series, we get a numer-
ical similar result. Also, it is worth mentioning that, the
p-wave solution does not depend much on the potential
type and the series.

The charm quark mass Mc is evaluated by taking the
ratio ẼPS,T/EPS,T. In Fig.7, we show the result for Mc,
where we see that Mc depends on the choice of the fit
function and the series. Following the discussion in the
previous paragraph, we use the charm quark mass ob-
tained from the Cornell-plus-log type function fitted to
SeriesII mc = 1.771(48) [GeV] here after.

Cornell

Cornell+log

FIG. 6. Numerical solutions for s-wave (S) and p-wave (P)
obtained using the pre-potentials. The upper panel shows the
results obtained by employing the Cornell type function and
the lower panel shows the results obtained by employing the
Cornell-plus-log type function for the fits respectively. The
shaded areas denote the statistical errors. We have also plot-
ted the NBS wave function obtained from LQCD (black dots)
for comparison.
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FIG. 12. The numerically obtained wave functions using the
pre-potential fitted to the Cornell type function. We also
plotted the NBS wave function (black circles) obtained from
LQCD for comparison.

C. Eigen value problem and the Diquark mass

Using the above obtained fit results, we solve the
Schrd̈inger equation Eq. (39) and evaluate the eigenval-
ues. For each series, the solutions for the s-wave and
p-wave are obtained as shown in Fig.12, where we find
overall agreement between the s-wave numerical results
and the LQCD data. The solution for SeriesIII best re-
produces the LQCD data, thus, we use this series here
after. The p-wave excitation pre-energy for SeriesIII is,
ẼPW = 2µ (Ep − Es) = 0.661(7) GeV.

Substituting the result of the eigenvalue problem and
Mc obtained in Section V to Eq. (24) and Eq. (25), we
obtain the diquark mass as MD = 1.220(45) [GeV]. In
Fig.13, we show MD compared to the ρ meson mass
Mρ = 1.098(5) [GeV] and the constituent mass 2

3MN =
1.049(12) [GeV] where we find that MD is slightly larger
than both which is consistent with what is expected in
the quark models. Also, the same trend is seen in the
result from the Landau gauge fixed correlation functions
in the chiral limit[18]. Thus our results are in line with
the prior work.

VII. COMPARISON OF c-D AND c-c̄
POTENTIALS

Using the masses of the diquark and the charm quark,
and also the pre-potentials, we are able to evaluate the
potentials for the c-D system and the c-c̄ system as,

Vcc̄(r) = Ṽcc̄(r)
Mc

for c-c̄ and VcD(r) = ṼcD(r)
2µcD

for c-
D system respectively. In Fig.14, we show the spin-
independent part of the c-c̄ potential and c-D potential,

1.00 1.10 1.20 1.30
mass	[GeV]

! meson	mass

!
" Nucleon	mass

!!

FIG. 13. Diquark mass. Mρ and 2
3MN are also shown for

comparison.

and in Table VIII, we have summarized the parameters
for the potentials. In the figure, we find that the Cornell
type and the Cornell-plus-log type function give almost
identical results for the c-c̄ potential.
Though the c-D potential and the c-c̄ potential are

qualitatively similar, they quantitatively differ in the fol-
lowing points:

• The c-c̄ potential has about three times stronger
attraction than the c-D potential which seems to
be consistent to the result from the static QQ̄ and
QQQ potentials[48] if we expect that the q-D po-
tential is naively a certain limit of the three quark
potential.

• The string tension for the c-c̄ potential is about
three-fourth of the c-D potential thus the linear
confinement is stronger in the latter.

• As in Table VIII, the c-D potential gives the
Sommer scale of r0 = 0.446(6) [fm] consistent to
the value 0.437(7) [fm] obtained from the Wilson
Loop[36]. On the other hand, the Sommer scale for
the c-c̄ potential is about 10% less than the value
from the Wilson Loop which may be a consequence
of finite mass effect.

VIII. CONCLUSIONS

In this work, we have presented a novel method to
evaluate the quark-diquark interaction potential and the
diquark mass from LQCD. The diquark mass observed
in this work is mD = 1.220(45) [GeV] which is slightly
above both the ρ meson mass mρ = 1.098(5) [GeV] and
2mN/3 = 1.049(12) [GeV], as expected from effective
theories for hadrons. When applied to the charmonium,
our method yields charm quark mass which is consistent

̅𝑐𝑐

TABLE III. The masses of mesons for this setup. The tensor (1+−) representation for flavored

mesons are omitted since the charge conjugations are ill defined in those sectors.

energy [GeV]

representation \ flavor composition cū cs̄ cc̄

0−+ 2.0157 (16) D 2.0660 (5) Ds 3.049 (2) ηc

1−− 2.1790 (96) D∗ 2.2245 (27) D∗
s 3.168 (23) J/ψ

0++ 2.5213 (1000) D∗
0 2.5737 (130) D∗

s0 3.559 (125) χc0

1++ 2.6917 (2072)D1 2.7278 (1600) Ds1 3.642 (124) χ1

1+− - - 3.651 (130)hc

TABLE IV. The charmonium spectrum for the setup.

energy [GeV]

0−+ 3.049 (2) ηc

1−− 3.168 (23) J/ψ

0++ 3.559 (125) χc0

1++ 3.642 (124) χ1

1+− 3.651 (130)hc

TABLE V. 1/a = 2.194[GeV]

B. Baryons

Ffit(r) = −A

r
+Br + C log(r) +D (51)

Ffit(r) = A1 exp(−B1r
2) + A2 exp(−B2r

2) + C (52)

∇2φ(r)− 2µ [U(r)− E]φ(r) = 0. (53)

mD =
µmc

mc − µ
(54)
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Potential
• cD potential and the 𝑐 ̅𝑐 potential
• Coulomb coefficient 

• cD : 𝑐 ̅𝑐 ≈ 1 : 3
• String tension

• Roughly the same
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A [GeV·fm] σ [GeV/fm] B [GeV] const [GeV] r0 [fm]
cc̄ (Cornell+log) 0.0972(30) 0.673(32) 0.284(8) -0.554(18) 0.409(10)

cc̄ (Cornell) 0.173(13) 0.924(52) - -0.0355(468) 0.406(13)
c-D (Cornell) 0.0665 (107) 1.31 (8) - -0.610(62) 0.446(6)

TABLE VIII. Summary of the potential parameters. For c-c̄, we show the results for Cornell (V (r) = −A
r + σr + const)

and Cornell-plus-log (V (r) = −A
r + σr + B log(r) + const) type functions. We also compare the Sommer scale r0 [fm], which

corresponds to the effective range of a potential V (r), defined by[49], r2 d
drV (r)

∣∣
r=r0

= 1.65. The value 1.65 is set to yield

r0 " 0.5 [fm] for the phenomenological q-q̄ potential[27].

FIG. 14. Spin-independent part of the c-c̄ potential and the
c-D potential. For c-c̄, we show the results for the Cornell
and the Cornell-plus-log type functions.

with that obtained from the Kawanai-Sasaki method.
Also, the quark-diquark potential shows the well known
Coulomb-plus-linear behavior as expected from the color
representation. Though it might be thought that the c-c̄
potential and the c-D potential have the same behav-
ior as they belong to the same color representation, they
turned out to differ quantitatively in string tension and
Coulomb coefficient.

In this work, we have considered a particular LQCD
setup. To draw out results related to the experiments,
extrapolation to the physical point is required, which can
be achieved using computed results from other LQCD se-
tups. Our method can be extended to a baryon consisting
of only light quarks (Λ baryon for instance), as long as
it is bound. However, extra care for the threshold en-
ergy and the flavor SU(3) symmetry is necessary. Also,
though we have considered only the scalar diquark, it is
presumed that, not only the scalar channel, but other
channels such as the pseudo-scalar, vector and the axial-
vector diquarks play crucial roles in a general context
of hadron physics. Since our method is capable of han-
dling such channels through the appropriate operators,

it would be interesting to consider them in the future.
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Appendix A: mq determination from spin triplet
sector

To obtain the charm quark mass from the spin triplet
sector, one may start from replacing Ṽ fit

PS(r) in the

Schrödinger equation Eq. (39) to Ṽ fit
V (r) = Ṽ fit

0 (r) +
1
4 Ṽ

fit
σ (r). Also, the p-wave excitation energy is replaced

from ∆Esp = MT −MPS to ∆E′
sp = 2MAV −MS −MV

where we have neglected the tensor interaction assuming
it to be small.
Solving the above Schrödinger equation gives the eigen-

values and the wave functions for the spin triplet sector
s-wave. In Fig.15, we show the numerical solutions for
the spin triplet channel where we find good agreement
between the numerical solution and the LQCD data. As
seen in the figure, the numerical solutions for the s-wave
coincide with the LQCD data for SeriesII and SeriesIII .
As we have discussed in Section V, we choose the result
obtained from the pre-potential fitted to SeriesII since
it reproduces the spin averaged wave function and the
PS channel wave function. The charm quark mass is
obtained as Mc = 1.667(80) [GeV] which is about 6%
smaller than that obtained from the singlet sector. This
discrepancy may be due to the tensor force not taken into
account in the this work.

Appendix B: qq̄ NBS wave function with explicit
Dirac indices

To make the Dirac indices explicit, the NBS wave func-
tion should be given as

ψM,αβ(x− y) ≡ Cαα′〈0|q̄c,α′(x)qc,β(y)|M〉, (B1)



Summary
• We proposed a new method to calculate the qD potential and the diquark mass from LQCD

• P-wave excitation energy was evaluated from
ØHALQCD method
Ø2pt function

• Diquark mass was determined by demanding these two results to agree

• In this study                     
• Diquark Mass : Consistent with a naive expectation of quark models

• Slightly heavier than ρ meson mass, 2/3 nucleon mass (roughly the same)

• Quark-diquark potential : qualitatively similar to quark-antiquark potential
• Consistent with Coulomb+linear behavior

• The string tension is roughly the same
• The Coulomb coefficient is ~1/3

• Future Works
• Finer lattice calculation to determine the short range behavior
• Chiral extrapolation
• Consider higher excited states
• Improving gauge fixing à Naive Lattice Coulomb gauge fixing may affect rotational symmetry
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