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Introduction
• Analytic structure of a propagator: states and spectrum

Physical case: Källén-Lehmann spectral representation

D(k2) =

∫ ∞

0
dσ2 ρ(σ2)

σ2 − k2
,

θ(k0)ρ(k
2) := (2π)d

∑
n

|⟨0|ϕ(0)|Pn⟩|2δD(Pn − k),

singularities on complex k2-plane
←→ states not orthogonal to ϕ(0) |0⟩

• Analytic structures of the QCD propagators would be
useful for understanding fundamental aspects of QCD, e.g.,
confinement.

We study analytic structures of the gluon (, quark, and ghost)
propagators in the (well-studied) Landau gauge and their
implications.
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Analytic structures of the QCD
propagators by massive
Yang-Mills model

[Y.H. and K.-I. Kondo, 1812.03116, 2001.05987]
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Modeling the propagators

• We will investigate the analytic structures of the propagators
from Euclidean lattice data through “analytic continuation”.
• The “analytic continuation” from lattice data is in principle
an ill-posed problem: we need a model with some
theoretical background.

Here, we use massive Yang-Mills model, or the Landau-gauge
limit of Curci-Ferrari model.

𝑘𝐸
2Im 𝑘𝐸

2

Re 𝑘𝐸
2

Analytic structure

Lattice data

“analytic continuation”: need a model
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Massive Yang-Mills model: an effective model of the
Landau-gauge Yang-Mills theory and QCD

massive Yang-Mills model [Tissier and Wschebor 2011][Peláez et al. 2014]

LmYM =
1

4
FA
µνF

A
µν + iBA∂µA

A
µ + c̄A∂µDµ[A]

ABcB +
1

2
M2AA

µA
A
µ︸ ︷︷ ︸

Gribov , AµAµ condensate, etc.

Advantages of this model

(1) Fitting to lattice data:

The one-loop gluon and ghost
propagators of this model present
striking agreement with lattice
results. (also with NF = 2 quarks)

(2) “good” perturbation:

The running coupling can be IR
finite in the one-loop RG.

Gluon propagator: lattice data [Duarte, Oliveira, and

Silva 2016] and one-loop result for SU(3) YM
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Results: analytic structures of the mYM propagators

Results of the propagators modeled by one-loop mYM� �
• NF = 0 (pure YM): the gluon propagator has a negative
spectral function and one pair of complex conjugate
poles for any parameters (g ,M).

• NF = 2: near the best-fit parameter (g ,M,mq), both
gluon and quark propagators have one pair of complex
conjugate poles.� �
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General properties of
propagators with complex poles

[Y.H. and K.-I. Kondo, 2103.14322, 2105.07487]
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Review: recent approaches to analytic structure

Recent analyses of independent approaches agree that the gluon
propagator seems to have complex singularities, e.g.,

1. Modeling gluon propagator to fit lattice results
• (refined-)Gribov-Zwanziger model [Dudal et. al. 2008]......

• Massive-type modeling [Siringo 2016] [this presentation]

• Padé approximation [Falcão, Oliveira, and Silva 2020]

• (A variant of) Schlessinger-point method [Binosi and Tripolt 2019]

2. Dyson-Schwinger equation on the complex momentum plane
[Strauss, Fischer, and Kellermann 2012] [Binosi and Tripolt 2019] [Huber and Fischer 2020]

→ Let us consider general properties of complex singularities.
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Where do we start? Euclidean field theory and QFT

[Osterwalder and Schrader 1973, 1975]

Euclidean
Schwinger functions {Sn}

Minkowski
Wightman functions {Wn}

Relativistic QFT
states and operators

standard:
OS reconstruction

(α) reconstruction S2 → W2

standard: Wightman
reconstruction

(β) a possibility
is discussed
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Complex poles: definition

Definition: Suppose that a two-point function in a Euclidean
field theory (Schwinger function) in the momentum space has the
following analytic structure, after an analytic continuation,

D(k2E ) =
∑
i

Zi

wi + k2E
+

∫ ∞

0
dσ2 ρ(σ2)

σ2 + k2E
,

The poles except for timelike
(k2E < 0) singularities are called
complex poles. (More generally,

complex singularities).

For an interpretation, one has to
reconstruct a QFT from the
Euclidean field theory.

Im k2

Re k2

k2
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General properties of complex poles

Wightman function W (t, x⃗) is reconstructed from Schwinger
function S(τ, x⃗) by identifying S(τ, x⃗) = W (−iτ, x⃗) (τ > 0).
In the presence of complex singularities (bounded in k2

E -plane), we
rigorously prove:

List of properties� �
• Holomorphy of W (t, x⃗) in the tube R4 − iV+

• Existence of the boundary value
W (t, x⃗) = limτ→+0W (t − iτ, x⃗) as a distribution.

• W (t, x⃗) satisfies Lorentz symmetry and locality (i.e.
spacelike commutativity).

◦ Non-temperedness of the boundary value
W (t, x⃗) /∈ S ′(R4)

◦ Violation of the positivity of W (t, x⃗) (and the reflection
positivity of S(τ, x⃗)).� �
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Remarks on the non-temperedness

• Non-temperedness: “exponential growth” of W (ξ) in ξ0.
e.g.) Gribov-type propagator in (0 + 1)-dim.

D(p) =
p2

p4 + γ4
→W (t) =

i

2γ
e
−i γt√

2 sinh

(
γt√
2
+

iπ

4

)
grows exponentially due to “complex energies” E = γ√

2
± iγ√

2
.

This exponential growth suggests that the corresponding
asymptotic states will be ill-defined (‘confined’).

• The spectral condition is violated since the spectral
condition requires the temperedness as a prerequisite.

• The positivity condition is violated since the positivity
(→unitarity) implies boundedness.

• The non-temperedness implies that “a native inverse Wick
rotation” in momentum space k2E → −k2 cannot be applied in
the presence of complex singularities.
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Interpretation in an indefinite metric state space

• The Wightman function W (t, x⃗) grows exponentially as
t → ±∞ → ∃states with complex conjugate energies.

• Such states with complex conjugate eigenvalues of a
hermitian Hamiltonian can be realized by zero-norm pairs in
an indefinite metric state space:

(|E ⟩ , |E ∗⟩)

{
H |E ⟩ = E |E ⟩ , H |E ∗⟩ = E ∗ |E ∗⟩
⟨E |E ⟩ = ⟨E ∗|E ∗⟩ = 0, ⟨E |E ∗⟩ ̸= 0

e.g.) the Lee-Wick model

• Complex singularities correspond to zero-norm pairs,
which should be confined. In the Kugo-Ojima scenario, they
should be in BRST quartets.
→ Both complex-conjugate-energy states in the “one-gluon
state” AA

µ(0) |0⟩ should contain BRST-parent states.
[→ complex singularities in ghost-gluon bound states?]
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Summary

We have investigated analytic structures of the QCD propagators
using the massive Yang-Mills model and considered their general
properties and interpretation.

• The gluon (and quark) propagators, modeled by the one-loop
massive YM model, have one pair of complex conjugate
poles near the best-fit parameter.

• Complex singularities lead to non-temperedness and
violation of the positivity of the Wightman function, while
they are consistent with Lorentz symmetry and locality.

• Complex singularities in a propagator can be understood as
pairs of zero-norm confined states.



Backup



Details: the massive YM model for SU(3) pure YM

[1812.03116][Kondo et. al., 1902.08894]

• Renormalization scheme (IR-safe scheme [Tissier and Wschebor 2011]){
ZAZCZM2 = 1, Zg

√
ZAZC = 1

Γ
(2)
A (kE = µ) = µ2 +M2, Γ

(2)
gh (kE = µ) = µ2

• Best-fit parameters at one-loop

g = 4.1, M = 0.45 GeV, renormalized at µ = 1 GeV

• Overall scale of the propagators is needed to fit lattice results
due to difference of the renormalization schemes.

• Positions of poles of the gluon propagator

−k2E = 0.23± 0.42i GeV2



Sketches of proofs: (0)holomorphy

Reconstruction: S(τ, x⃗)→W (ξ = (t, x⃗))� �
S(τ, x⃗)

τ>0
= W (−iτ, x⃗) → W (ξ − iη) in R4 − iV+

→ W (ξ) = lim
η→0, η∈V+

W (ξ − iη)

� �
e.g.) Gribov-type propagator (Ep⃗ :=

√
p⃗2 + iγ2 with ReEp⃗ > 0)

D(p) =
p2

p4 + γ4
=

1

2

(
1

p2 − iγ2
+

1

p2 + iγ2

)
→ S(τ, x⃗) =

∫
d3p⃗

(2π)3
e i p⃗·x⃗

[
e−Ep⃗τ

2Ep⃗
+

e−E∗
p⃗ τ

2E ∗
p⃗

]

→W (ξ − iη) =

∫
d3p⃗

(2π)3
e i p⃗·(ξ⃗−i η⃗)

[
e−iEp⃗(ξ

0−iη0)

2Ep⃗
+

e−iE∗
p⃗ (ξ

0−iη0)

2E ∗
p⃗

]

converges (and is holomorphic in ξ − iη) for η0 > |η⃗|, i.e., η ∈ V+.



Sketches of proofs:
(1) boundary value and non-temperedness

Reconstruction: S(τ, x⃗)→W (ξ = (t, x⃗))� �
S(τ, x⃗)

τ>0
= W (−iτ, x⃗) → W (ξ − iη) in R4 − iV+

→ W (ξ) = lim
η→0, η∈V+

W (ξ − iη)

� �
e.g.) Gribov-type propagator (cont’d)

W (ξ − iη) =

∫
d3p⃗

(2π)3
e i p⃗·(ξ⃗−i η⃗)

[
e−iEp⃗(ξ

0−iη0)

2Ep⃗
+

e−iE∗
p⃗ (ξ

0−iη0)

2E ∗
p⃗

]

• If smeared by a smooth compactly-supported function of ξ,
W (ξ − iη) has a limit η → 0 (η ∈ V+):
∃W (ξ) = limη→0, η∈V+ W (ξ − iη) as a distribution.
• Since Ep⃗ is complex, W (ξ) grows exponentially for ξ0 → ±∞.

W (ξ) is not tempered.



Sketches of proofs: (2) violation of positivity

� �
The positivity is violated due to the non-temperedness.� �

For this, we show

positivity =⇒ temperedness

Rough idea:

• Positivity of 2pt.-function → the sector {ϕ(x) |0⟩}x∈R4 has a
positive metric.

• translational invariance → translation operator U(a):
U(a)ϕ(x) |0⟩ = ϕ(x + a) |0⟩ is unitary.

Therefore, the Wightman function W (a) = ⟨0|ϕ(0)U(−a)ϕ(0)|0⟩
will be bounded above ⇒ tempered.



Sketches of proofs:
(3) Lorentz symmetry and locality

Lorentz symmetry� �
Euclidean rotation SO(4) invariance of S(τ, x⃗)
→ Complex Lorentz L+(C) invariance of W (ξ − iη)
→ Restricted Lorentz invariance of W (ξ)� �
Spacelike commutativity� �
For general casesa, the spacelike commutativity follows from

• permutation symmetry of Schwinger function,

• single-valued continuation W (ξ − iη) in the ‘extended
tube’ L+(C)[R4 − iV+] including spacelike points.

• −1 ∈ L+(C) ⇒ W (z) = W (−z).
aFor a single scalar field, this immediately follows from Lorentz symmetry.� �
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