Winding number sectors in U(1) quantum link model

Debasish Banerjee

Philipp Krah Paolo Stornati

Saha institute of **Nuclear Physics**

DESY Zeuthen

LATTICE 2021

Karl Jansen

TU Berlin

DESY Zeuthen

Motivation

- quantum phenomena
- The "silver blaze" problem in QCD

POSSIBLE TO STUDY IN A PURE U(1) GAUGE THEORY IN 2+1 DIM

- The excitations are strings that propagate all over the lattice
- The winding number acts as the "number operator" for those strings

Winding sector in U(1) quantum link model

Condensation phenomena of bosonic and fermionic particles exhibit macroscopic

U(1) Quantum link model Hamiltonian

QUANTUM LINK OPERATOR

PLAQUETTE OPERATOR

HAMILTONIAN

GAUGE OPERATOR

GAUGE INVARIANCE

ZERO CHARGE CONDITION

Winding sector in U(1) quantum link model

Paolo Stornati

$$\begin{split} U_{x,\mu} &= C_{x,\mu} + iS_{x,\mu} \\ U_{\Box} &= U_{x,\mu} U_{x+\hat{\mu},\nu} U_{x+\hat{\nu},\mu}^{\dagger} U_{x,\nu}^{\dagger} \\ \mathcal{H} &= -J \sum_{\Box} (U_{\Box} + U_{\Box}^{\dagger}) + \lambda (U_{\Box} + U_{\Box}^{\dagger})^2 \\ G_x &= \sum_{\mu} (E_{x-\hat{\mu},\mu} - E_{x,\mu}) \\ [\mathcal{H}, G_x] &= 0 \end{split}$$

Spin representation

COMMUTATION RELATION

SU(2) REPRESENTATION

FINITE HILBERT SPACE

GAUGE OPERATOR

[S Chandrasekharan and U.-J Wiese, Quantum link mode Volume 492, Issues 1–2,

Winding sector in U(1) quantum link model

Paolo Stornati

$$\begin{bmatrix} E_{x,\mu}, U_{y,\nu} \end{bmatrix} = U_{x,\mu}\delta_{\mu,\nu}\delta_{x,y}$$
$$\begin{bmatrix} E_{x,\mu}, U_{y,\nu}^{\dagger} \end{bmatrix} = -U_{x,\mu}^{\dagger}\delta_{\mu,\nu}\delta_{x,y}$$
$$\begin{bmatrix} U_{x,\mu}, U_{y,\nu}^{\dagger} \end{bmatrix} = 2E_{x,\mu}\delta_{\mu,\nu}\delta_{x,y}$$

$$E_{x,\mu} = S_{x,\mu}^{3} \quad C_{x,\mu} = S_{x,\mu}^{1} \quad S_{x,\mu} = S_{x,\mu}^{2}$$

$$U_{x,\mu} = S_{x,\mu}^{x} + iS_{x,\mu}^{y} = S_{x,\mu}^{+}$$

$$U_{x,\mu}^{+} = S_{x,\mu}^{x} - iS_{x,\mu}^{y} = S_{x,\mu}^{-}$$

$$G_{x} = \sum_{\mu} \left(E_{x-\hat{\mu},\mu} - E_{x,\mu} \right) = \sum_{\mu} \left(S_{x-\hat{\mu},\mu}^{3} - S_{x,\mu}^{3} \right)$$

Winding number simmetry

Symmetries of the Hamiltonian

ADDITIONAL SYMMETRY

WINDING NUMBER OPERATORS

Paolo Stornati

- U(1) Gauge symmetry
- Point group symmetries:
 - Translation
 - Rotation
 - Parity
- Charge conjugation:
 - \mathbb{Z}^2
- Winding number symmetry: $U(1) \otimes U(1)$

$$W_{x} = \frac{1}{L_{x}} \sum_{x}^{L_{x}} \sum_{y}^{L_{y}} S^{3}_{(x,y),\hat{x}} W_{y} = \frac{1}{L_{y}} \sum_{x}^{L_{x}} \sum_{y}^{L_{y}} S^{3}_{(x,y),\hat{y}}$$

$$[\mathcal{H}, W_x] = [\mathcal{H}, W_y] = 0$$

Winding sector in U(1) quantum link model

Hamiltonian with chemical potential

HAMILTONIAN WITH WINDING OPERATOR

NUMERICAL SETUP FOR THE 2+1 DIMENSIONAL QLM

LATTICE CONFIGURATION

- 2 dimensional ladder
- Open boundary conditions in y direction
- Periodic boundary conditions in x direction

 $\mathcal{H}' = -J\sum_{\Box} (U_{\Box} + U_{\Box}^{\dagger}) + \lambda (U_{\Box} + U_{\Box}^{\dagger})^2 + \mu_x \sum_x W_x + \mu_y \sum_y W_y$

 $E_{GS} = E_{\mathcal{H}} - \mu_x N^x - \mu_y N^y$

Winding sector in U(1) quantum link model

Numerical results

Winding number sectors as a function of the chemical potential for $\,J=1$ $\lambda=-1$

Winding sector in U(1) quantum link model

Paolo Stornati

Numerical results

Winding sector in U(1) quantum link model

Paolo Stornati

Winding number sectors as a function of the chemical potential for J=1 $\lambda=-2$

Summary

- Investigation of the winding number sector in U(1) quantum link model
- Increase of chemical potential associated with the winding number causes condensation of string flux

- Thermodynamic limit
- Study of other observables
- Study of real-time dynamic of strings

Paolo Stornati

Winding sector in U(1) quantum link model

Outlook

