Peeking into the θ vacuum of 4d Yang-Mills theory

Based on 2102.08784 [hep-lat] [Ref. JHEP02, 073 (2021)]

Norikazu Yamada (KEK/SOKENDAI) in collaboration with Ryuichiro Kitano (KEK/SOKENDAI) Ryutaro Matsudo (KEK) Masahito Yamazaki (Kavli IPMU)

LATTICE 21 July 26 2021, zoom@MIT

Goal

Clarify the θ dependence of free energy density $f(\theta)$ of 4d YM

$$e^{-Vf(\theta)} = \frac{Z(\theta)}{Z(0)}$$

where $Z(\theta) = \int \mathcal{D}U e^{-S_{\rm YM} + i\theta Q}$, $Q = \int d^4x q(x)$ and $q(x) = \frac{1}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma}$

For *SU*(*N*) YM theory,

 $Q \in \mathbb{Z} \Rightarrow Z(\theta) = Z(\theta + 2\pi) \Rightarrow f(\theta) = f(\theta)$ $S_{\text{YM}} \text{ is CP even } \Rightarrow Z(\theta) = Z(-\theta) \Rightarrow f(\theta) = I(-\theta)$

$$= f(-\theta) \int f(\pi - \theta') = f(\pi + \theta')$$

θ dependence and CP violation

Dilute instanton gas approximation (DIGA)

 $\Rightarrow f(\theta) = \chi(1 - \cos \theta)$

- a single branch
- smooth everywhere

θ dependence and CP violation

Dilute instanton gas approximation (DIGA)

 $\Rightarrow f(\theta) = \chi(1 - \cos \theta)$

- a single branch
- smooth everywhere

Large N argument [Witten (1980, 1998)] $\Rightarrow f(\theta) = \chi/2 \min_{k \in \mathbb{Z}} (\theta + 2\pi k)^2 + O(1/N^2)$

- consists of many branches with crossing
- spontaneous CPV (1st order PT) at $\theta = \pi$ with the order parameter $\frac{df(\theta)}{d\theta} = -i\langle q(x) \rangle$

θ **dependence** and **CP** violation

Dilute instanton gas approximation (DIGA)

 $\Rightarrow f(\theta) = \chi(1 - \cos \theta)$

- a single branch
- smooth everywhere

Large N argument [Witten (1980, 1998)] $\Rightarrow f(\theta) = \chi/2 \min(\theta + 2\pi k)^2 + O(1/N^2)$ $k \in \mathbb{Z}$

- consists of many branches with crossing
- spontaneous CPV (1st order PT) at $\theta = \pi$ with the order parameter $\frac{df(\theta)}{d\theta} = -i\langle q(x) \rangle$

Interested in $f(\theta)$ around $\theta \approx \pi$ in 4d SU(N) YM theory.

Summary of previous results on $f(\theta)$

- Large *N* argument seems robust \Rightarrow CPV at $\theta = \pi$ for large *N*
- Formal arguments tell that, for general *N*, CP has to be broken at θ = π if the vacuum is in the confining phase.
 [Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)]
- Some numerical evidences of *CPV* for $N \ge 3$
- What happens to the possible smallest *N*, i.e. *SU*(2) YM ?
 Is it like "large *N*" or "2d *CP*¹" ?
- \Rightarrow Lattice numerical simulations (difficult due to sign problem)

New method without any expansion

Generate configurations with $\theta = 0$ Define sub-volume $V_{sub} = l^4$ and $Q_{sub} = \sum q(x) \notin \mathbb{Z}$ $e^{-V_{\rm sub}f_{\rm sub}(\theta)} = \frac{Z_{\rm sub}(\theta)}{Z(0)} = \frac{1}{Z(0)} \left[\mathscr{D}U \ e^{-S_g + i\theta Q_{\rm sub}} = \langle e^{i\theta Q_{\rm sub}} \rangle \right]$ $f_{\rm sub}(\theta) = -\frac{1}{V_{\rm sub}} \ln\langle \cos(\theta Q_{\rm sub}) \rangle$ $f(\theta) = \lim_{V_{\text{sub}} \to \infty} f_{\text{sub}}(\theta) = \lim_{l \to \infty} \left\{ \frac{f(\theta)}{l} + \frac{s(\theta)}{l} + O(1/l^2) \right\} \quad \text{cf) string tension}$ with $l_{dvn}^4 \ll V_{sub} \ll V_{full}$ (l_{dyn} : dynamical length scale)

 $s(\theta)$: surface tension

[Kitano, Matsudo, NY, Yamazaki(2021)]

Lattice parameters and observables

- SU(2) YM theory by Symanzik improved gauge action
- $\beta = \frac{4}{g^2} = 1.975$ (relatively fine: $1/(aT_c) = 9.50$)
- $V_{\text{full}} = 24^3 \times \{48, 6, 8\} \ (T = 0, 1.2T_c, 1.6T_c)$
- · Periodic boundary condition in all directions
- •# of configs = { 68000 , 10000 , 10000 }
- Calculate $Q_{sub} = \sum q(x)$ and estimate $x \in V_{sub}$ $\checkmark f(\theta) = -\lim_{V_{\text{sub}} \to \infty} \frac{1}{V_{\text{sub}}} \ln\langle \cos(\theta Q_{\text{sub}}) \rangle$ $\checkmark \frac{df(\theta)}{d\theta} = \lim_{V_{\text{sub}} \to \infty} \frac{1}{V_{\text{sub}}} \frac{\langle Q_{\text{sub}} \sin(\theta Q_{\text{sub}}) \rangle}{\langle \cos(\theta Q_{\text{sub}}) \rangle}$

which are used to crosscheck each other

$l \to \infty \liminf^{\pi/2} a T = 0$

- $V_{\text{sub}} = l^4$ with $l \in \{10, 12, \dots, 24\}$
- Data in the range of $l_{\rm dyn}^4 \ll V_{\rm sub} \ll V_{\rm full}$ are fitted to

$$f_{\rm sub}(\theta) = f(\theta) + \frac{as(\theta)}{l}$$

• Linear extrapolation works well.

 2π

θ dependence of $f(\theta)$ at T = 0

 $f(\theta)/\chi$

- Succeed to calculate up to $\theta \sim 3\pi/2.2 T_c$
- Monotonically increasing function $\frac{\theta^2}{1-\cos\theta}$
- Inconsistent with DIGA $\int d\theta df/d\theta$
- $f(\pi \frac{3}{2}\theta) \neq f(\pi + \theta)$ requires explanation. • Re-weighting (=full velume) method
- Re-weighting (=full volume) method works only around $\theta = 0$.

 $\pi/2$

• Numerical consistency with $\int d\theta$

()

 2π

 π

θ

θ dependence of $f(\theta)$ at $T = 1.2T_c$

- Systematic error due to ambiguity of the scaling region is large for $\theta > \pi$ $\theta^2/2$
- Within large uncertainty, consistent with the DIG
- Numerical consistency with
- Similar results at $T = 1.6 T_c$

10

Discussion

- For $T > T_c$, consistent with $f(\theta) = \chi(1 \cos \theta)$
- At T = 0, $f(\pi \theta) \neq f(\pi + \theta)$ is not satisfied and it is not like

Why?

• Sub-volume method seems to trace an original branch even after the crossing point is passed.

- Sub-volume method seems to trace an original branch even after the crossing point is passed.
- Similar to the calculation of the static potential, where "string breaking" should happen but never occurs.

- Sub-volume method seems to trace an original branch even after the crossing point is passed.
- Similar to the calculation of the static potential, where "string breaking" should happen but never occurs.

- Sub-volume method seems to trace an original branch even after the crossing point is passed.
- Similar to the calculation of the static potential, where "string breaking" should happen but never occurs.
- In the present case, the domain to domain-wall transition should occur but does not in this method.

- Sub-volume method seems to trace an original branch even after the crossing point is passed.
- Similar to the calculation of the static potential, where "string breaking" should happen but never occurs.
- In the present case, the domain to domain-wall transition should occur but does not in this method.

- Sub-volume method seems to trace an original branch even after the crossing point is passed.
- Similar to the calculation of the static potential, where "string breaking" should happen but never occurs.
- In the present case, the domain to domain-wall transition should occur but does not in this method.

Summary and conclusion

- We have developed a sub-volume method, which enables us to calculate $f(\theta)$ up to $\theta \sim 3\pi/2$ in SU(2) Yang-Mills theory.
- Combining with the theory requirement $f(\pi \theta) = f(\pi + \theta)$, our result provides with the evidence for spontaneous *CPV* at $\theta = \pi$ and at T = 0. \Rightarrow *SU(2)* belongs to large N class (not like CP^1 model).
- The same method roughly reproduces the DIGA result, $f(\theta) \sim \chi(1 \cos \theta)$, above T_c , which makes the above result more confident.

Future studies

- exploring the location of $T_c(\theta)$
- applying the sub-volume method to the finite • density system.

θ

SU(N) with $N = 2, \dots \infty$

Backup slides

 $\Rightarrow f(\theta) \Big|_{\theta \approx 2\pi} \sim 0 \Rightarrow 2\pi$ -periodicity can be expected.

In this case, $Q_{\rm sub}$ is almost always integer if $\rho_{\rm instanton}^4 \ll V_{\rm sub}$.

θ -vacuum

- The vacuum can have an integer winding number, labeled by $|n\rangle$.
- But, this label is changed by gauge transformation, e.g. $U_{(1)}|n\rangle \rightarrow |n+1\rangle$.

• Define
$$|\theta\rangle = \sum_{n=\infty}^{+\infty} e^{in\theta} |n\rangle \iff U_{(1)} |\theta\rangle = e^{-i\theta} |\theta\rangle$$

• $\langle \theta_{+} |\theta_{-}\rangle_{I} = \sum e^{in\theta} e^{-im\theta} \langle m_{+} |n_{-}\rangle_{I} = \sum e^{i\theta Q} \sum \langle e^{i\theta Q} |\theta_{-}\rangle_{I}$

$$= \sum_{Q} \int_{\in Q} \mathscr{D}A \ e^{-S_g + i\theta Q} +$$
$$= \int \mathscr{D}A \ e^{-S_g + i\theta Q} + \int J \cdot A$$

Expected behavior of $f_{sub}(\theta)$ as a function of V_{sub}

- It must be $V_{\rm sub} \gg l_{\rm dyn}^4$.
- As long as $V_{\text{sub}} \gg l_{\text{dyn}}^4$, $f_{\text{sub}}(\theta)$ is expected to show the scaling behavior, $f_{\text{sub}}(\theta) = f(\theta) + \frac{s(\theta)}{l} + O(1/l^2)$.
- Buch a behavior will end as $V_{sub} \rightarrow V_{full}$, where $Q_{\text{sub}} \rightarrow Q_{\text{full}} \in \mathbb{Z}$. Thus, $V_{\text{sub}} \ll V_{\text{full}}$ is required.
- On the other hand, the method fails when $|\theta Q_{sub}| \sim \pi$ because $f_{\rm sub}(\theta) \propto \ln \langle \cos(\theta Q_{\rm sub}) \rangle$ becomes ill-defined.
- Crucial question:

 $V_{\rm sub}$ satisfying $l_{\rm dyn}^4 \ll V_{\rm sub} \ll V_{\rm full}$ and $|\theta Q_{\rm sub}| < \pi$ exists?

Similarity to the static potential calculation

In the static potential calculation, Wilson loop is inserted.

- $\frac{Z(\Box)}{Z(1)} = \frac{1}{Z(1)} \int \mathcal{D}U \operatorname{Tr}\left[e^{i \oint A}\right] e^{-S_{\text{QCD}}} = \langle \operatorname{Tr}\left[e^{i \oint A}\right] e$
- $V(\mathscr{A}) = -\lim_{\mathscr{A} \to \infty} \ln \langle \operatorname{Tr}[e^{i \oint A}] \rangle = \sigma \mathscr{A} + \cdots$

In sub-volume method, instead a operator extending over subvolume is inserted.

 $f(\theta)$ is analogous to σ in the static potential.

$$^{A}]\rangle \rightarrow e^{-V(\mathcal{A})}$$

About smearing

- Need to numerically calculate $q(x) = \frac{1}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma}$ on the lattice Raw configurations are contaminated by local lumps. •
- Smearing (= smoothing a configuration) removes such short-distance artifacts. lacksquare
- However, at the same time, smearing may alter relevant topological excitations, too. \bullet
- We studied this point and developed the procedure to restore relevant information. [Kitano, NY, Yamazaki (2021)]
 - calculate an observable every 5 steps of the smearing
 - extrapolate those back to $n_{APE} \rightarrow 0$, $\langle O \rangle = \lim_{n_{APE} \rightarrow 0} \langle O(n_{APE}) \rangle$

$n_{\rm APE} \rightarrow 0 \, {\rm limit} \, {\rm at} \, T = 0$

1 /

• Fit range $n_{APE} = [20, 40]$ determined in [Kitano, WY, Yangazaki (20, 20, 1)]. • Linear fiteworks well. • Monetonfic function $f(\pi) < f(3\pi/2)$ 0 $(3\pi/2)$

 $\pi/2$

-10

-20

()

 $3\pi/2$

 π

θ