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Goal




where        ,     and   


For  YM theory,





e−Vf(θ) =
Z(θ)
Z(0)

Z(θ) = ∫𝒟U e−SYM+iθQ Q = ∫ d4x q(x) q(x) =
1

64π2
ϵμνρσFa

μνFa
ρσ

SU(N)

Q ∈ ℤ ⇒ Z(θ) = Z(θ + 2π) ⇒ f(θ) = f(θ + 2π)

SYM is CP even ⇒ Z(θ) = Z(−θ) ⇒ f(θ) = f(−θ)

2

}    
f(π − θ′￼) = f(π + θ′￼)

Clarify the θ dependence of free energy density  of 4d YMf(θ)



 dependence and CP violationθ
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 

(23) 

dU and qL , one 

mumd sin #S 
i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 

mumd>m,Imd--U 

(24) 

(25) 

f(θ)

Dilute instanton gas approximation (DIGA)

⇒ f(θ) = χ(1 − cos θ)

• a single branch

• smooth everywhere
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finds the following equation for +S : 

(23) 
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i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 

mumd>m,Imd--U 

(24) 

(25) 

f(θ)

Dilute instanton gas approximation (DIGA)

⇒ f(θ) = χ(1 − cos θ)

• a single branch

• smooth everywhere

• consists of many branches with crossing

• spontaneous CPV (1st order PT) at  with 

the order parameter  
θ = π

df(θ)/dθ = − i⟨q(x)⟩

Large N argument [Witten (1980, 1998)]

⇒ f(θ) = χ/2 min

k∈ℤ
(θ + 2πk)2 + O(1/N2)

-π 0 π 2π 3π

θ

f(θ)
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Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
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In the regime (22) our equations can be written, at 0 = T, 
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Dilute instanton gas approximation (DIGA)

⇒ f(θ) = χ(1 − cos θ)

• a single branch

• smooth everywhere

Interested in  around  in 4d  YM theory.f(θ) θ ≈ π SU(N)

• consists of many branches with crossing

• spontaneous CPV (1st order PT) at  with 

the order parameter  
θ = π

df(θ)/dθ = − i⟨q(x)⟩

Large N argument [Witten (1980, 1998)]

⇒ f(θ) = χ/2 min

k∈ℤ
(θ + 2πk)2 + O(1/N2)
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• Large  argument seems robust ⇒ CPV at  for large N


• Formal arguments tell that, for general , CP has to be 
broken at  if the vacuum is in the confining phase.

[Gaiotto, et al.(2017)],   [Kitano, Suyama, NY(2017)]


• Some numerical evidences of CPV for 


• What happens to the possible smallest N, i.e.  YM ?

Is it like “large ” or “2d ” ?


⇒ Lattice numerical simulations (difficult due to sign problem)

N θ = π

N
θ = π

N ≥ 3

SU(2)
N CP1

T

θ
2ππ

Tc

SU(2)?

T

θ
2ππ

Tc

SU(N)  for  N ≫ 1

C
P

confine

confine

deconfine

deconfine
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Summary of previous results on  f(θ)



New method without any expansion
Generate configurations with 

Define sub-volume   and 











with         (  : dynamical length scale)


           : surface tension

θ = 0
Vsub = l4 Qsub = ∑

x∈Vsub

q(x) ∉ ℤ

e−Vsub fsub(θ) =
Zsub(θ)
Z(0)

=
1

Z(0) ∫𝒟U e−Sg+iθQsub = ⟨eiθQsub⟩

fsub(θ) = −
1

Vsub
ln⟨ cos(θQsub) ⟩

f(θ) = lim
Vsub→∞

fsub(θ) = lim
l→∞ {f(θ)+

s(θ)
l

+ O(1/l2)}
l4
dyn ≪ Vsub ≪ Vfull ldyn

s(θ)

Vsub

Vfull

θ ≠ 0

θ = 0

5

“sub-volume method”

[Kitano, Matsudo, NY, Yamazaki(2021)]

cf) 2d  by [Keith-Hynes and Thacker (2008)]CP1

cf) string tension



Lattice parameters and observables
•  YM theory by Symanzik improved gauge action


•   (relatively fine: )


•   ( )

• Periodic boundary condition in all directions

• # of configs = { 68000 ,  10000 ,  10000 }


• Calculate    and estimate


✓ 


✓ 


which are used to crosscheck each other

SU(2)

β =
4
g2

= 1.975 1/(aTc) = 9.50

Vfull = 243 × {48, 6, 8} T = 0, 1.2Tc, 1.6Tc

Qsub = ∑
x∈Vsub

q(x)

f(θ) = − lim
Vsub→∞

1
Vsub

ln⟨ cos(θQsub) ⟩

df(θ)
dθ

= lim
Vsub→∞

1
Vsub

⟨ Qsub sin(θQsub) ⟩
⟨ cos(θQsub) ⟩

6

Vsub

Vfull

θ ≠ 0

θ = 0



 limit at l → ∞ T = 0

•  with 


• Data in the range of  are 
fitted to


               


• Linear extrapolation works well.

Vsub = l4 l ∈ {10, 12, ⋯, 24}

l4
dyn ≪ Vsub ≪ Vfull

fsub(θ) = f(θ) +
as(θ)

l

7
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FIG. 2: The linear extrapolation of f(✓) to nAPE = 0, where
f(✓) is obtained by the fit with l 2 [14, 18].

region for ✓ = 3⇡/2. In order to estimate the potential
size of the systematic uncertainty due to the ambiguity of
the universal region, three fit ranges, l 2 [12, 16], [14, 18]
and [16, 20], are examined when fitting to the expected
universal behavior

fsub(✓) = f(✓) +
a�1 s(✓)

l
, (7)

where s(✓) denotes the surface tension of the nonzero ✓
domain and a the lattice spacing. The fit works, and
all the fits yield �2/dof < 3. It is interesting to see
that the relative relation fsub(3⇡/2) > fsub(⇡) at small
l flips toward the large l limit and f(✓) ends up with
non-monotonic function.

The results thus obtained are then extrapolated to
nAPE = 0 at each value of ✓ with the fit range shown
in Tab. I. In the extrapolation, the linear fit goes well
with �2/dof < 3. The stability against small shifts of the
fit range is seen in Fig. 2.

Finally, the free energy density obtained from the three
fit ranges are shown from top to bottom (open sym-
bols) in Fig. 3 together with the full volume result at
nAPE = 45 (filled squares), where f(✓) is normalized by
the topological susceptibility in Tab. I. The prediction
from the dilute instanton gas approximation, 1� cos(✓),
is shown by the dashed curve. The function, ✓2/2, is also
shown as the solid curve for comparison. Taking into ac-
count the uncertainty arising from the ambiguity of the
universal region, the numerical results are consistent with
the instanton prediction. Note that non-monotonic be-
havior of f(✓) seems robust at high temperature but is
far from obvious before the extrapolations, as the surface
tension term in Eq. (7) is monotonic.

f(✓) can also be obtained from the numerical integra-
tion of df(✓)/d✓ as shown by the dotted curves. The
agreement with those curves supports that the two non-
trivial extrapolations included in the whole analysis do
not pick up accidental fluctuations and are stable.
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FIG. 3: The ✓ dependence of f(✓) at T = 1.2Tc.
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FIG. 4: The linear extrapolation of fsub(✓) to the infinite
volume limit.

The result with full volume is found to well agree with
the instanton prediction. One may think that this is the
simplest way to obtain f(✓). However, we will see that
it does not work at T = 0. From the test, assuming that
the instanton prediction is valid at high temperature, we
learn that the universal behavior of fsub would be linear
and the region showing such a behavior starts around the
dynamical length scale (⇠ 1/(aTc)).

IV. APPLYING TO ZERO TEMPERATURE

Next we apply the subvolume method to calculate the
vacuum energy density. This time the subvolume is de-
fined by Vsub/a4 = l4 with l = 10, 12, · · · , 24 and taken
from 512 places per configuration. The l dependence of
fsub(✓) are shown in Fig. 4 as before. Due to the sign
problem in this method, some results at large ✓ and large
l could not be calculated. But the available data show



 dependence of    at θ f(θ) T = 0
• Succeed to calculate up to 

• Monotonically increasing function

• Inconsistent with DIGA

•  requires explanation.

• Re-weighting (=full volume) method 

works only around .


• Numerical consistency with 

θ ∼ 3π/2

f(π − θ) ≠ f(π + θ)

θ = 0

∫dθ
df
dθ
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Figure 6. θ dependence of f(θ) (top) and df(θ)/dθ (bottom) at) at T = 0, 1.2Tc and 1.6Tc from left to right.
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 at df(θ)/dθ T = 0

• Order parameter is non-zero





⇒ spontaneous CPV at 

df(θ)/dθ
θ=π

= − i⟨ q(x) ⟩θ=π ≠ 0

θ = π
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FIG. 5: The linear extrapolation of a4f(✓) to nAPE = 0 for
the data obtained with l 2 [12, 16].

linear behavior. Following the previous analysis, three
fit ranges of l 2 [10, 14], [12, 16] and [14, 18] are taken
in the fit to (7) to estimate the systematic uncertainty.
Contrary to the high temperature case, f(✓) turns out
to be stable against the variation of the fit range, and
does not show any sign of the flip, indicating monotonic
behaviors of f(✓) as a function of ✓.

The linear extrapolation to nAPE = 0 is carried out
with the fit range shown in Tab. I, and the fit is found
to work well with �2/dof < 3 as shown in Fig. 5. The
stability against shift of the fit range is also confirmed.

Finally, the resulting f(✓) and df(✓)/d✓ are shown in
Fig. 6 together with the predictions from the large N
(✓2/2) and the instanton calculus (1� cos ✓). The stabil-
ity of the two extrapolations during the analysis is con-
firmed as f(✓) and df(✓)/d✓ well agree with the dotted
curves. While the full volume calculation works only in
the vicinity of ✓ = 0, the subvolume method succeeds
to calculate, at least, to ✓ ⇠ ⇡. There are crucial differ-
ences from the high temperature case. First, the different
choices of the fit range in l yield consistent results, and
hence the potential systematic error from the ambiguity
of the universal region seems to be under control. Sec-
ond, f(✓) is a monotonically increasing function, at least,
to ✓ ⇠ ⇡, and the direct calculation of df(✓)/d✓ clearly
shows d f(✓)/d✓|✓=⇡ 6= 0. Since d f(✓)/d✓ = �ihq(x)i is
CP odd, we conclude that CP is spontaneously broken
at ✓ = ⇡ in the vacuum of the 4d SU(2) Yang-Mills the-
ory [? ] and that there is a phase transition to recover
the CP symmetry at some finite temperature. In other
words, it is found that the 4d SU(2) Yang-Mills theory is
in the large-N class unlike the 2d CP1 model [? ].

V. DISCUSSION

The symmetry of SU(N) gauge theories indicates
f(✓) = f(�✓) and f(✓) = f(✓ + 2⇡). In the subvol-
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FIG. 6: f(✓) (top) and df(✓)/d✓ (bottom).

ume method, f(✓) = f(�✓) is automatic from (2) but
the 2⇡-periodicity is not seen in f(✓) shown in Fig. 6.

The subvolume method is equivalent to modifying the
value of ✓ inside the subvolume. If the difference of ✓
is a multiple of 2⇡ and the calculation respects the 2⇡-
periodicity, the free energy would scale as the surface area
of the subvolume when the subvolume is large enough.
The lack of 2⇡ periodicity in the free energy density
should thus be interpreted as the presence of a meta-
stable vacuum for a fixed value of ✓ (except for ✓ = ⇡
where two vacua interchanged by CP are degenerate and
stable). Thus, we expect that the meta-stable vacuum
should eventually decay into the stable one by the cre-
ation of a dynamical domain wall that attaches to the
interface.

The absence of the decay of the domain into the
domain-wall in the lattice calculation has an analog in
the calculation of the static potential [? ]. The static
potential is calculated by inserting a Wilson loop, and
should show the string breaking for configurations with
light dynamical quarks when the two test charges are dis-
tant enough. But it does not occur, at least, within naive
methods, and the resulting potential sticks to the origi-



 dependence of    at θ f(θ) T = 1.2Tc
• Systematic error due to ambiguity of the scaling 

region is large for 


• Within large uncertainty, consistent with the DIGA.



•  ⇒ no CPV above 


• Numerical consistency with 


• Similar results at 

θ > π

df(θ)/dθ
θ=π

≈ 0 Tc

∫ dθ
df
dθ

T = 1.6 Tc

10

 0

 2

 4

 6

 8

 10

 12

 14

0 π/2 π 3π/2 2π

f(
θ)

 /
 χ

θ

T=0

θ2
 / 2

1-cosθ
∫dθ df/dθ

full volume

-1

 0

 1

 2

 3

 4

 5

 6

0 π/2 π 3π/2 2π

f(
θ)

 /
 χ

θ

1.2 Tc

θ2
 / 2

1-cosθ
∫dθ df/dθ

full volume

-1

 0

 1

 2

 3

 4

 5

 6

0 π/2 π 3π/2 2π

f(
θ)

 /
 χ

θ

1.6 Tc

θ2
 / 2

1-cosθ
∫dθ df/dθ

full volume

-1

 0

 1

 2

 3

 4

 5

0 π/2 π 3π/2 2π

d
f(
θ)

/d
θ 

/ 
χ

θ

T=0
θ

sin θ
Δf

full volume

-3

-2

-1

 0

 1

 2

 3

0 π/2 π 3π/2 2π

d
f(
θ)

/d
θ 

/ 
χ

θ

1.2 Tc
θ

sinθ
∫dθ df/dθ

full volume

-3

-2

-1

 0

 1

 2

 3

 4

0 π/2 π 3π/2 2π

d
f(
θ)

/d
θ 

/ 
χ

θ

1.6 Tc
θ

sin θ
Δf

full volume

Figure 6. θ dependence of f(θ) (top) and df(θ)/dθ (bottom) at) at T = 0, 1.2Tc and 1.6Tc from left to right.

– 9 –



Discussion
•For  ,  consistent with 


•At  ,    is not satisfied and it is not like

T > Tc f(θ) = χ(1 − cos θ)

T = 0 f(π − θ) ≠ f(π + θ)

11

Why ?

-π 0 π 2π 3π

θ

f(θ)



Interpretation
• Sub-volume method seems to trace an original 

branch even after the crossing point is passed.
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discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 
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Interpretation
• Sub-volume method seems to trace an original 

branch even after the crossing point is passed.

2

into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 
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If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 
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(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
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into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)

Chernodub (2010)

I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 

(23) 

dU and qL , one 

mumd sin #S 
i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 
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into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)

Chernodub (2010)

I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 
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dU and qL , one 
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into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)
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I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 

(23) 

dU and qL , one 

mumd sin #S 
i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 

mumd>m,Imd--U 

(24) 

(25) 

f(θ)

f0(θ) f1(θ)
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f0(π + ϵ) f0(π + ϵ)
→ f1(π + ϵ)

4d SU(N) YM has an topological object 
called a bag or a domain-wall

[Luscher (1978)].

Interpretation
• Sub-volume method seems to trace an original 

branch even after the crossing point is passed.

2

into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)

Chernodub (2010)

I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 

(23) 

dU and qL , one 

mumd sin #S 
i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 

mumd>m,Imd--U 

(24) 

(25) 

f(θ)

f0(θ) f1(θ)
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Summary and conclusion
• We have developed a sub-volume method, which enables us to calculate  up 

to  in SU(2) Yang-Mills theory.


• Combining with the theory requirement  , our result provides 
with the evidence for spontaneous CPV at  and at .

⇒ SU(2) belongs to large N class (not like  model).


• The same method roughly reproduces the DIGA result,   , 
above  , which makes the above result more confident.

f(θ)
θ ∼ 3π/2

f(π − θ) = f(π + θ)
θ = π T = 0

CP1

f(θ) ∼ χ(1 − cos θ)
Tc

13



Future studies

• exploring the location of 


• applying the sub-volume method to the finite 
density system.

Tc(θ)

T

θ
2ππ

Tc

SU(N) with  N = 2, ⋯ ∞

C
P

confine

deconfine
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Intuitive understanding of periodic behavior of  f(θ)

16

: instanton

: anti-instanton

Vsub

Qsub = + 1

Vsub

Qsub = 0

Vsub

Qsub = + 1

In this case,   is almost always integer if  .


⇒     ⇒  -periodicity can be expected.

Qsub ρ4
instanton ≪ Vsub

f(θ)
θ≈2π

∼ 0 2π

f(θ) = − lim
Vsub→∞

1
Vsub

ln⟨e−iθQsub⟩ = − lim
Vsub→∞

1
Vsub

ln⟨ cos(θQsub) ⟩



-vacuumθ
• The vacuum can have an integer winding number, labeled by .


• But, this label is changed by gauge transformation, e.g. .


• Define    ⟺   


• 


                  


                  

|n⟩

U(1) |n⟩ → |n + 1⟩

|θ⟩ =
+∞

∑
n−∞

einθ |n⟩ U(1) |θ⟩ = e−iθ |θ⟩

⟨θ+ |θ−⟩J = ∑
m,n

einθe−imθ⟨m+ |n−⟩J = ∑
Q

eiθQ ∑
m

⟨m+ |m− + Q⟩J

= ∑
Q

∫∈Q
𝒟A e−Sg+iθQ+ ∫ J⋅Aδ(Q −

g2

32π2 ∫ d4xGG̃)
= ∫ 𝒟A e−Sg+iθQ+ ∫ J⋅A

17



Expected behavior of  as a function of fsub(θ) Vsub

18

leaved in a somewhat labyrinthine arrangement. Figure 5

shows a plot of f!x
" # sign!q!x

"" on a C
P

3 configuration

on a 30$ 30 lattice. As is the case in QCD, the presence of

thin alternating-sig
n-coherent regions of codimension one

is in some sense the maximum amount of long-range order

allowable by the required (and observed) negativity of the

correlator for nonzero separation.

To constru
ct a quantitative measure of coherence, we

determine the fraction of the lattice volume occupied by

the n
largest stru

ctures on each configuration as a function

of n. Figure 6 shows the results for both the overlap q!x
"

distri
bution and the log-plaquette

operator qP
!x".

Also

shown for compariso
n is the same plot for a set of random

configurations. These results are from a large ensemble of

CP
3 configurations on a 40$ 40 lattice with

! #
1:0

(correlation length %
5). We see that the overlap definition

of q!x
" exhibits a clear indication of coherence, e.g. the

typical largest stru
ctures are much larger than those in a

random configuration. Somewhat surprisin
gly, the pla-

quette
phase

definition actually
exhibits

less stru
cture

than the purely random distri
butions. This is an effect of

the nearest-n
eighbor anticorrelation for the plaquette

phase.
A. Topological charge correlator

In the continuum, the Euclidean topological charge cor-

relator must be negative outsid
e of a positiv

e contact term

at x #
0. On the lattice, the overlap q!x

" is not ultralocal,

but it can be argued that it becomes local in the continuum

limit, at least for sufficiently
smooth gauge fields [10].

Spectral arguments only require the correlator to be nega-

tive when the two operators are nonoverlapping. The cor-

relator hq!
x"q!0

"i is shown in Fig. 7 for C
P

3 for several

values of!. We see that the correlator consists
of a positiv

e

core at x &
!!!
2p , and a negative short-ra

nge tail starting at

FIG. 5 (color online).
Plot of the function sign!q!x

"" for a C
P

3

configuration on a 30$ 30 lattice at !
# 1:2.
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FIG. 6 (color online).
Percent of the total volume occupied by

the n
largest stru

ctures for the overlap and plaquette distri
butions

of the topological charge. For compariso
n, we show the result for

a random distri
bution of numbers.
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FIG. 7 (color online).
Topological charge correlator for C

P
3

(lattice units).

FIG. 4 (color online).
Two typical largest stru

ctures for CP
3 on

a 50$ 50 lattice at !
# 1:2.
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θ = 0

Vfull Ahmad, et al. (2005)

θ ≠ 0Vsub

• It must be  .


• As long as  ,   is expected to show the scaling 

behavior,  .


• Buch a behavior will end as  , where 
 . Thus,  is required.


• On the other hand, the method fails when   because 
 becomes ill-defined.


• Crucial question:

 satisfying  and  exists ?

Vsub ≫ l4
dyn

Vsub ≫ l4
dyn fsub(θ)

fsub(θ) = f(θ)+
s(θ)

l
+ O(1/l2)

Vsub → Vfull
Qsub → Qfull ∈ ℤ Vsub ≪ Vfull

|θ Qsub | ∼ π
fsub(θ) ∝ ln⟨ cos(θQsub) ⟩

Vsub l4
dyn ≪ Vsub ≪ Vfull |θ Qsub | < π



Similarity to the static potential calculation
In the static potential calculation, Wilson loop is inserted.








In sub-volume method, instead a operator extending over 
subvolume is inserted.


 is analogous to σ in the static potential.

Z( □ )
Z(1)

=
1

Z(1) ∫𝒟U Tr[ei∮ A]e−SQCD = ⟨Tr[ei∮ A]⟩ → e−V(𝒜)

V(𝒜) = − lim
𝒜→∞

ln⟨Tr[ei∮ A]⟩ = σ𝒜 + ⋯

f(θ)

R

T

I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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About smearing

• Need to numerically calculate   on the lattice


• Raw configurations are contaminated by local lumps.


• Smearing (= smoothing a configuration) removes such short-distance artifacts.


• However, at the same time, smearing may alter relevant topological excitations, too.


• We studied this point and developed the procedure to restore relevant information. 
[Kitano, NY, Yamazaki (2021)]

- calculate an observable every 5 steps of the smearing


- extrapolate those back to ,   

q(x) =
1

64π2
ϵμνρσFa

μνFa
ρσ

nAPE → 0 ⟨O⟩ = lim
nAPE→0

⟨O(nAPE)⟩

20



 limit at nAPE → 0 T = 0

• Fit range  determined in 
[Kitano, NY, Yamazaki (2021)].


• Linear fit works well.


• Monotonic function   

nAPE = [20, 40]

f(π) < f(3π/2)
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FIG. 5: The linear extrapolation of a4f(θ) to nAPE = 0.
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FIG. 6: f(θ) (top) and df(θ)/dθ (bottom).

Discussion and Conclusion
The two facts in SU(N) gauge theory, f(θ) = f(−θ)

and the f(θ) = f(θ + 2π), leads to f(π + θ) = f(π − θ).
However, f(θ) at T = 0 in Fig. 6 does not respect it.
The subvolume method is equivalent to the modification
of the θ term inside the subvolume. If the difference of
θ is a multiple of 2π and the calculation respects the
2π-periodicity, the free energy would scale as the sur-
face area of the subvolume when the subvolume is large
enough. The lack of 2π periodicity in the free energy
density should thus be interpreted as the presence of a

-20
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s
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1.2 Tc
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FIG. 7: Comparison of θ dependence of the surface tension
s1(θ) at T = 0 and 1.2Tc.

meta-stable vacuum for a fixed value of θ (except for
θ = π where two vacua interchanged by CP are degen-
erate and stable). The absence of the transition to the
lower energy state, i.e. the transition from the domain
to the domain-wall in the present case, has an analog in
the static potential calculation, the absence of the string
breaking. Since the method based on an operator inser-
tion seems to trace an original branch even after a level
crossing with another branch, it will miss the first or-
der phase transition while we expect that it can capture
second oder transitions in principle because meta-stable
states do not exist. In reality, the meta-stable vacuum
should eventually decay into the stable one by the cre-
ation of a dynamical domain wall that attaches to the in-
terface. Although such a behavior could not be seen with
the subvolume method, it is interesting to learn that such
a domain wall object actually exists in the Yang-Mills
theory [24].

Although the number of data points are limited, the
infinite volume extrapolations assuming the linear form
reproduces the qualitative behavior of the instanton pre-
diction at high temperatures. It is then expected that
the same procedure works also at T = 0. The calcula-
tion passes a consistency check and finds the free energy
density at T = 0, which is substantially different from
those at high temperatures. We thus conclude that CP
is spontaneously broken in the vacuum in the 4d SU(2)
Yang-Mills theory at θ = π [42] and that there is a phase
transition to recover the CP symmetry at some finite
temperature.

While numerical results are not accurate past θ ∼
3π/2, there are indications that the derivative df(θ)/dθ
decreases past θ = π, and becomes smaller near θ ∼ 2π.
This is consistent with the expectation [13] that there
are two metastable branches of the SU(2) theory, each of
which has 4π periodicity.

In summary, we developed the subvolume method for
the 4d Yang-Mills theory, with which one can extract
qualitative features of the free energy densities for finite
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