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Goal
Clarify the 9 dependence of free energy density f(6) of 4d YM
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For SU(N) YM theory,
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0 dependence and CP violation

Dilute instanton gas approximation (DIGA)

= f(0) = y(1 — cos 0)
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0 dependence and CP violation

Dilute instanton gas approximation (DIGA)

= f(0) = y(1 — cos 0)
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- a single branch
- smooth everywhere

Large N argument [Witten (1980, 1998)]

= f(0) = y/2 min(@ + 27k)* + O(1/N?)
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- consists of many branches with crossing
- spontaneous CPV (1st order PT) at @ = & with

the order parameter df(0)/d0 = — i{q(x))




0 dependence and CP violation

Large N argument [ Witten (1980, 1998)]

Dilute instanton gas approximation (DIGA)
~ f(0) = y(1 — cos 0) = f(0) = /2 min(0 + 27k)* + O(1/N?)
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- consists of many branches with crossing
- spontaneous CPV (1st order PT) at @ = & with

- a single branch
- smooth everywhere
the order parameter df(0)/d0 = — i{q(x))

Interested in f(0) around @ ~ 7 in 4d SU(N) YM theory.
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Summary of previous results on f{0)

* Large N argument seems robust = CPV at @ = = for large N T SUN) for N> 1
deconfine
» Formal arguments tell that, for general NV, CP has to be T, \ /
broken at @ = rif the vacuum is in the confining phase. confine
[Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)] \&
* Some numerical evidences of CPVfor N > 3
T 21
* What happens to the possible smallest N, i.e. SU(2) YM ? 0
s it like “large N” or “2d CP!”? . SU2)?
= Lattice numerical simulations (difficult due to sign problem) | deconfine
m /
T 2T
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New method without any expansion

[Kitano, Matsudo, NY, Yamazaki(2021)]

Generate configurations with 6 = 0 “sub-volume method”

Deﬁne Sub—volume Vsub — l4 and QSub — Z q(x) g YA cf) 2d CP! by [Keith-Hynes and Thacker (2008)]
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Lattice parameters and observables

*SU(2) YM theory by Symanzik improved gauge action
A
f=— = 1975 (relatively fine: 1/(al) = 9.50)

g
Ve = 24° % {48, 6, 8} (T =0, 1.2T,, 1.6T)

' Periodic boundary condition in all directions

*# of configs = { 68000, 10000, 10000 }

- Calculate Q,= Z g(x) and estimate

xeV.

sub
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Vsup— 0 Vsub

S

df (9) . . 1 < qub Sin(erub) >
v = lim
do Vsup— 00 Vsub < COS(@qub) >

which are used to crosscheck each other 6
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0 dependenceof f(0) atT =0

14 | ' T—0 O * Succeed to calculate up to 8 ~ 37/2
)

12 | 110/88 o * Monotonically increasing function

10 | Jde df/ae * Inconsistent with DIGA

full volume B~

* f(r — 0) # f(m + 0) requires explanation.

* Re-weighting (=full volume) method

works only around 6 = 0.
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« Numerical consistency with Jdé’ P
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df(0)/do | y

dfi0)/doat T = 0
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* Order parameter is non-zero

Af(O)/d0| =~ i{q(x) Jgur # 0

= spontaneous CPVatfd = r
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6 dependenceof f(0) at T = 1.2T.

« Systematic error due to ambiguity of the scaling

12T, —eo
0% /2

fdal (ff(/)(slg |+ Within large uncertainty, consistent with the DIGA.

region is large for @ > «

full volume — ®

¢ TV Yoy . 1« df(60)/do ~ () = no CPVabove T,
- Yoy oL O=r
df
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% . Similarresultsat7 =1.6T,
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Discussion

*For T > T., consistent with f(€) = y(1 — cos 6)
At T=0, f(m—0) # f(x + 0) is not satishied and it is not like

£(0)
-7t 0 T 27 3
0

Why ?

[



Interpretation

* Sub-volume method seems to trace an original
branch even after the crossing point is passed.
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Interpretation o

* Sub-volume method seems to trace an original
branch even after the crossing point is passed.

* Similar to the calculation of the static potential,
where“string breaking” should happen but
never occurs.

Chernodub (2010)
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Interpretation e

* Sub-volume method seems to trace an original
branch even after the crossing point is passed.

* Similar to the calculation of the static potential,
where“string breaking” should happen but

Nnever OCCurs.

V(r-5v{r)

* In the present case, the domain to domain-wall
transition should occur but does not in this

method.

Chernodub (2010)

folzr + €) folr H €) 4d SU(N) YM has an topological object
s iz e called a bag or a domain-wall
1 : [Luscher (1978)].
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Summary and conclusion

* We have developed a sub-volume method, which enables us to calculate f(6) up
to @ ~ 3x/2 in SU(2) Yang-Mills theory.

» Combining with the theory requirement f(x — ) = f(x + 0), our result provides
with the evidence for spontaneous CPVat @ = rand at T'= 0.
= SU(2) belongs to large N class (not like CP' model).

* The same method roughly reproduces the DIGA result, f(6) ~ y(1 — cos8),
above T, which makes the above result more confident.
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Future studies
SU(N) with N=2, -+ o

» exploring the location of 7.(6) deconfine

* applying the sub-volume method to the finite C \ /
confine

density system.
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Intuitive understanding of periodic behavior of f(0)

f(0) =— lIm : ln(e‘iQqub> — — |lim : In{ cos(60Q.+,) )

Vsub_)oo VSllb Vsub_>c>O VSllb
@ :instanton
@ :anti-instanton
v v v
v v L
Vsub
- @ Y -
Vsub
qub =+ 1 qub =0 qub =41

In this case, Q. is almost always integer if piflstanton < V-

sub

= f(0) N 0 = 2r-periodicity can be expected.
~NLTT
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¢-vacuum

* The vacuum can have an integer winding number, labeled by | 7).

» But, this label is changed by gauge transformation, e.g. Uy, |n) — |n + 1).

+ 00

 Define |0) = Z e\ n) = Uy | 0) = e™?| )
* <‘9+ ‘ 9-)] — Z einé’e—im9<m+ ‘ n->] — 2 e’ 2 <m+ ‘ m_ + Q)J
m,n 0 m
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Expected behavior of £, . (6) asafunctionof V_,

It must beV,_, > [

.AslongasV, >

behavior, f..(0) = f(0)4+— z

dyn °

l4

dyn » Jsun(0) is expected to show the scaling

© - O(1/17).

- Buch a behavior willend as V, ;,, — V;,;;, where
Owb = Ot € Z - Thus, V,, <V is required.

- On the other hand, the method fails when [0 Q. .| ~ 7 because
foun (@) o< In{ cos(0Q,,;,) ) becomes ill-defined.

- Crucial question:
V

1, satisfying [

dyn

< Vo, < Vipand |00, | < mexists?
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Similarity to the static potential calculation

In the static potential calculation, Wilson loop is inserted.

Z([])
Z(1)

1 . |
_ i$A] ,—Socp — i§A — V()
7ey JQZU Tr|e't4|e a0 = (Tr[e'*4|) — e

V(o) = — lim In(Tr|e'*|) = oo/

A — 00

In sub-volume method, instead a operator extending over
subvolume is inserted.

f(0) is analogous to o in the static potential.
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About smearing

. Need to numerically calculate g(x) = 1 €pot uF pe ON the lattice
T

* Raw configurations are contaminated by local lumps.
* Smearing (= smoothing a configuration) removes such short-distance artifacts.
* However, at the same time, smearing may alter relevant topological excitations, too.

* We studied this point and developed the procedure to restore relevant information.
[Kitano, NY, Yamazaki (2021)]

- calculate an observable every 5 steps of the smearing

- extrapolate those back ton,pr — 0, (O) = lim (O(nppgp))
nape—0
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* Fit range npp = [20, 40] determined in
[Kitano, NY, Yamazaki (2021)].

* Linear fit works well.

* Monotonic function f(x) < f(37/2)



