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Introduction

Applications of machine learning (ML):
Computer vision, natural language processing, medicine and (high energy) physics

Artificial neural networks (ANNs or NNs)

I Highly expressive basis for function approximation
I Universal approximators for non-linear functions
I Typically high number of free parameters, “black boxes”

Neural networks applied to physical data (e.g. field theory)

I High expressivity: NNs a priori do not know about symmetry
I Symmetries in data have to be learned (approximated)
I Alternative: restrict parameters to enforce symmetry
I This work: NNs which respect (non-Abelian) gauge symmetry
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Convolutional neural networks

Convolutional NNs (CNNs) use translational equivariance for data on lattices (e.g. images)

I Restrict parameters to enforce translational equivariance

I Compact kernels (locality)
→ only consider compact neighborhoods

I Weight sharing (homogeneity)
→ same operation at every point

I Translational equivariance
“Translations on input induce translations on output”

I More general: G-CNNs (rotations, reflections, ...)

I Symmetry is not learned, but implemented

I Applications in lattice field theories e.g. φ4 (next talk by Matteo!)
S. Bulusu, M. Favoni, A. Ipp, D. I. Müller, D. Schuh,
“Generalization capabilities of translationally equivariant neural networks”
Preprint (2021) [arXiv:2103.14686]
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Gauge equivariance and invariance

Lattice gauge theory: gauge theories on lattices with exact gauge invariance
I Gauge links U and 1× 1 loops W

Ux,µ ' exp
(
igaµAµ(x+aµ/2)

)
∈ SU(Nc)

Wx,µν = Ux,µUx+µ,νUx+µ+ν,−µUx+ν,−ν

I Lattice gauge transformations for U and W

TΩUx,µ = ΩxUx,µΩ†x+µ, Ωx ∈ SU(Nc)
TΩWx,µν = ΩxWx,µνΩ†x

I Gauge equivariant function

g(TΩU , TΩW) = T ′Ωg(U ,W)

I Gauge invariant function (e.g. observables, action)

g(TΩU , TΩW) = g(U ,W)

I Neural network layers should be gauge equivariant!
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Lattice gauge equivariant convolutional neural networks
L-CNNs: A collection of gauge equivariant layers for lattice gauge configurations

Plaq, Poly

U
gauge links

(input)

(U ,W)

L-Conv

L-BL

L-Act, L-Exp

Trace

gauge inv. output

CNN

predictions
(output)

I Preprocessing: Plaq, Poly
U → (U ,W)
[no trainable parameters]

I Convolutions: L-Conv
(U ,W)→ (U ,W ′)
[Conv + parallel transport]

I Bilinear layer: L-BL
(U ,W)→ (U ,W ·W ′)
[local matrix mult.]

I Activation layer: L-Act
(U ,W)→ (U , a(W) · W)
[local scalar mult.]

I Exponential maps: L-Exp
(U ,W)→ (eiω · U ,W)
[local matrix mult.]

I Postprocessing: Trace
Invariant output
[no trainable parameters]
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Arbitrary Wilson loops using L-CNNs

I Repeated applications of L-Conv and L-BL operations can be used to generate arbitrarily
sized Wilson loops if input W consists of plaquettes (preprocessing layer Plaq)

(a)

=

(b)

×

(c)

I Non-contractible loops can also be generated by including Polyakov loops in the input W
(preprocessing layer Poly)

I Non-linear functions of Wilson loops are possible through L-Act, Trace and passing gauge
invariant output to traditional CNNs

I L-CNNs are universal approximators for gauge invariant functions on the lattice
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Benchmarks and testing I

Benchmark problem: regression of Wilson loops from 1× 1 to 4× 4 on 2D lattice

I Data set: SU(2) gauge field configurations U from MC simulation, β ∈ {0.1, . . . , 6.0}
I Input (“x”): gauge field configuration U ∈ CNx×Ny×2×Nc×Nc

I Output (“y”): Re Tr
[
W (n×m)] /Nc ∈ R

I Metric: mean squared error (MSE)
I Training on small lattice: 8× 8 (104 samples)
I Testing on larger lattices: 8× 8, 16× 16, 32× 32, 64× 64 (103 samples)

Comparison study

I L-CNN models: 1 – 4 L-Conv + L-BL layers
O(10) – O(104) trainable parameters, 100 individual models

I Baseline models: traditional CNNs, up to 6 layers, up to 512 channels, 4 activation functions
O(100) – O(105) trainable parameters, 2840 individual models

I Both architectures get same information (links U , plaquettes W)
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Benchmarks and testing II

Benchmark problem: regression of Wilson loops from 1× 1 to 4× 4 on 2D lattice

W (1×1)W (1×1)

1.0 · 10−91.0 · 10−9

2.2 · 10−112.2 · 10−11

−0.5 0 0.5 1
−0.5

0

0.5

1

Predicted value

T
ru

e
v
a
lu
e

CNN

L-CNN

W (1×2)W (1×2)

2.0 · 10−32.0 · 10−3

2.1 · 10−92.1 · 10−9

−0.5 0 0.5 1
−0.5

0

0.5

1

Predicted value

W (2×2)W (2×2)

4.0 · 10−34.0 · 10−3

1.1 · 10−81.1 · 10−8

−0.2 0 0.2 0.4 0.6

−0.2

0

0.2

0.4

0.6

Predicted value

W (4×4)W (4×4)

4.2 · 10−34.2 · 10−3

1.4 · 10−71.4 · 10−7

−0.2 0 0.2

−0.2

0

0.2

Predicted value

Plot: True vs. predicted values for CNNs and L-CNNs for n×m Wilson loops (best models)

I From left to right: increase in loop size → more difficult task
I Deteriorating performance of baseline CNNs with increased loop size
I Best L-CNN always beats best baseline CNN
I Consistent performance of L-CNNs across all loop and lattice sizes
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Benchmarks and testing III

Benchmark problem: regression of Wilson loops from 1× 1 to 4× 4 on 2D lattice

0 10 20 30 40 50
0

0.2

0.4

Monte Carlo step

R
e
T
r
[ W

(1
×
2
)
] /N

c

CNN (random) L-CNN (random) MC (true)

CNN (adversary) L-CNN (adversary)

Plot: Sensitivity to gauge transformations for 1 × 2 Wilson loop

I Test for sensitivity to random and adversarial gauge transformations

TΩUx,µ = ΩxUx,µΩ†x+µ, TΩWx,µν = ΩxWx,µνΩ†x

I Baseline CNNs are sensitive to gauge transformations, L-CNNs are invariant
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Benchmarks and testing IV

L-CNNs also work in higher dimensions!

0 50 100 150 200 250

2

3

4

5

Wilson flow time τ

Q
p
la
q
(τ

)

MC

L-CNN

Plot: L-CNN predictions vs. true values (MC) for Qplaq on a 8× 243 configuration

I L-CNN model for topological charge prediction
I Trained on MC configurations
I Tested on “cooled” configurations (Wilson flow)
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Summary and outlook

L-CNNs: framework for lattice gauge equivariant convolutional neural networks

I Fully respects SU(Nc) gauge symmetry
I Universal approximators for gauge invariant functions
I Automated extraction of physical information from lattice configurations
I Better performance than traditional CNNs in presented regression tasks
I Open source (based on PyTorch)

Repository: gitlab.com/openpixi/lge-cnn
Our group: openpixi.org

What’s next?

I Improvements to code (more modules, performance, memory consumption, . . . )
I More complicated observables
I Application to normalizing flows?

5pt
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Thank you for your attention!

Plaq, Poly

U
gauge links

(input)

(U ,W)

L-Conv

L-BL

L-Act, L-Exp

Trace

gauge inv. output

CNN

predictions
(output)

Code: gitlab.com/openpixi/lge-cnn Group: openpixi.org

E-Mail: dmueller@hep.itp.tuwien.ac.at
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Backup
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Related works

Incomplete list of recent related works (from other authors, chronologically)
I P. E. Shanahan, A. Trewartha, W. Detmold

“Machine learning action parameters in lattice quantum chromodynamics”
PRD 97 (2018) [arXiv:1801.05784]

I T. S. Cohen, M. Weiler, B. Kicanaoglu, M. Welling
“Gauge Equivariant Convolutional Networks and the Icosahedral CNN”
ICML 2019 (2019) [arXiv:1902.04615]

I G. Kanwar, M. S. Albergo, D. Boyda, K. Cranmer, D. C. Hackett, S. Racanière, D. J. Rezende, P. E. Shanahan
“Equivariant flow-based sampling for lattice gauge theory”
PRL 125 (2020) [arXiv:2003.06413]

I D. Boyda, G. Kanwar, M. S. Albergo, S. Racanière, D. J. Rezende, M. S. Albergo, K. Cranmer, D. C. Hackett,
P. E. Shanahan
“Sampling using SU(N) gauge equivariant flows”
PRD 103 (2021) [arXiv:2008.05456]

I D. L. Boyda, M. N. Chernodub, N. V. Gerasimeniuk, V. A. Goy, S. D. Liubimov, A. V. Molochkov
“Machine-learning physics from unphysics: Finding deconfinement temperature in lattice Yang-Mills theories
from outside the scaling window”
PRD 103 (2021) [arXiv:2009.10971]

I A. Tomiya, Y. Nagai
“Gauge covariant neural network for 4 dimensional non-abelian gauge theory”
Preprint (2021) [arXiv:2103.11965]
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Individual layers
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Preprocessing and equivariant convolutions

Preprocessing layers (Plaq, Poly)

I Operations defined for tuples (U ,W) with gauge links U
and locally transforming matrices W

I Preprocess input U to generate W

Plaq, Poly : U → (U ,W)

Lattice gauge equivariant convolutions (L-Conv)

I Similar to CNN layers: compact kernels, weight sharing
I Parallel transport of data W to common point using U
I Path (in)dependence, implementation for D dimensions

L-Conv : W ′x,i =
∑
j,µ,k

ωi,j,µ,kUx,k·µWx+k·µ,jU
†
x,k·µ

I Equivariant convolutions: (U ,W)→ (U ,W ′)
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Bilinear layers and activation functions

Equivariant bilinear layers (L-BL):

I Multiplication of W’s at same lattice point is equivariant

L-BL : W ′′x,i =
∑
j,k

αijkWx,jW
′
x,k

I Bilinear layers: (U ,W)× (U ,W ′)→ (U ,W ′′)

Gauge equivariant activation functions (L-Act):

I Multiplication of W with gauge invariant scalar functions a

L-Act : W ′x = a(TrWx)Wx

I Activation functions: (U ,W)→ (U ,W ′)

5pt



D. I. Müller: “ Lattice Gauge Symmetry in Neural Networks”, Lattice 2021 18

Exponential layers and the trace operation

Equivariant exponential layers (L-Exp):

I Equivariant method to modify links U → U ′

I Multiplication of U with locally transforming SU(Nc)

U ′x,µ = exp
(
i
∑
i

βµ,i [Wx,i]ah
)
Ux,µ

I Equivariant exponential layer: (U ,W)→ (U ′,W)

Generate gauge invariant output (Trace)

I Compute traces of W’s: gauge invariant complex numbers

Trace : wx,i = TrWx,i ∈ C

I No trainable parameters (“postprocessing”)
I Gauge invariant output can be passed to traditional CNN

5pt
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Random and adversarial gauge transformations

5pt



D. I. Müller: “ Lattice Gauge Symmetry in Neural Networks”, Lattice 2021 20

Random gauge transformations

Predictions of networks without gauge invariance can be sensitive to gauge transformations

I Trained neural network: hθ : U → R
I Choose lattice configuration U and save original prediction

y0 = hθ(U)

I Apply random gauge transformation with random Gaussian numbers ρax

Ωx = exp (igtaρax) ,
〈
ρax
〉

= 0,
〈
ρaxρ

b
x′

〉
= αδabδxx′

U → U ′ : U ′x,µ = ΩxUx,µΩ†x+µ

I Save transformed prediction
y′ = hθ(U ′)

I Repeat N times to generate Y = {y′1, y′2, . . . , y′N}
I max(Y)−min(Y) as a measure of sensitivity to gauge transformations

5pt
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Adversarial gauge transformations

Predictions of networks without gauge invariance can be sensitive to gauge transformations

I Trained neural network: hθ : U → R
I Choose lattice configuration U and record original prediction y0 = hθ(U)
I Gauge transformation Ωx with parameters ρax: Ωx = exp (igtaρax)
I Initialize ρax randomly and save prediction

yρ = hθ(Uρ)

I Loss function
L[ρ] = (y0 − yρ)2

I Maximize loss function L[ρ] w.r.t. ρ via gradient descent (using PyTorch)
I Repeat process with multiple random initializations for ρ and record results
Y = {yρ1 , yρ2 , . . . , yρN

}
I max(Y)−min(Y) as a measure of sensitivity to gauge transformations

5pt
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L-CNN and CNN architectures
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Baseline CNNs for 1× 1 and 1× 2 loops
I Various input data: U , U+W, U+W+W† (later just U+W+W†)
I Activation functions: ReLU, LeakyReLU, tanh, sigmoid
I Architecture sizes: “small”, “medium”, “large”, “wide”

Figure: CNN architectures for 1 × 1 and 1 × 2 loops in 2D
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Baseline CNNs for 2× 2 and 4× 4 loops

Figure: CNN architectures for 2 × 2 and 4 × 4 loops in 2D
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L-CNNs for 1× 2, 2× 2 and 4× 4 in 2D

Figure: L-CNN architectures for Wilson loops in 2D
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L-CNNs for 2× 2, 4× 4 and Qplaq in 4D

Figure: L-CNN architectures for Wilson loops in 4D
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