Algorithms for DWF

Peter Boyle (BNL), Christopher Kelly (BNL), Azusa Yamaguchi (University of Edinburgh) RBC-UKQCD collaboration

- Domain Wall Multigrid
- Large domain DDHMC for GPUs

• Goal: enable 2+1+1f simulations, 4GeV cut off

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Meyer

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>CERN</u>

Andreas Jüttner (Southampton)

Columbia University

Norman Christ Duo Guo Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Ahmed Sheta Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Michael Riberdy Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Tim Harris Raoul Hodgson Nelson Lachini Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

<u>KEK</u> Julien Frison

University of Liverpool

Nicolas Garron

<u>Michigan State University</u> Dan Hoying Milano Bicocca Mattia Bruno

Peking University Xu Feng

University of Regensburg

Davide Giusti Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Nils Asmussen Alessandro Barone Jonathan Flynn Ryan Hill Rajnandini Mukherjee Chris Sachrajda

<u>University of Southern Denmark</u> Tobias Tsang

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Domain Wall Multigrid

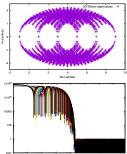
- Preprint: https://arxiv.org/pdf/2103.05034.pdf
- Spectrum of DWF makes coarsening nearest neighbour operator hard
 - Polynomial approximation to ¹/_z in region of complex plane enclosing origin
 - Typically solve normal equations on positive definite M[†] M
 - Nearest neighbour coarsenings of $\gamma_5 R_5 D_{dwf}$ (Herm, indefinite)
- Novel chebyshev polynomial setup of multigrid
- Result: Set up and solve twice D_{dwf} faster than red-black CG
- HMC focus; use compressed Lanczos for valence analysis

Comparison of Domain Wall Fermion Multigrid Method

Poter Boyle IRT Physics Dyperturest, Brudianes National Laboratory, Upton, NY 19925, USA. and School of Physics and Astronomy, Disnoversig of Radowski, Edisburgh XMP 522, UK

Areas Yamaguda Adalad at Davies and Astronomy Communic of Education Education Fills 177, 176

We present a decided magnitude of neural massis and new spectrum has no subliqued bank with the second state of the second st



0.000001 0.000010 0.000100 0.001000 0.010000 0.100000 1.000000 10.000000

Large domain DDHMC for GPUs

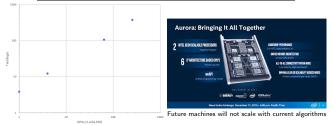
Motivation:

- GPU speed is increasing rapidly over time
- Interconnect speeds are *not* keeping pace.
- Expense spent on interconnect is significant
- If we get nearer commodity pricing, this will be even worse

- Project 30% efficiency on future systems
- GPU cache sizes are growing
 - DWF reuses gauge links L_s times
 - DWF reuses spinors 2N_d times
 - ⇒ cache bound performance on a single node
- Interconnect will rapidly become bottleneck

System balance

GPUs	Node peak FP32	Node interconnect (GB/s Snd+Rcv)
4 × A100	78TF/s	200GB/s
4 × A100	78TF/s	200GB/s
6 × V100	94TF/s	50GB/s
6 x Intel Xe		300-400GB/s
		300GB/s to GPU's?
	4 × A100 4 × A100 6 × V100	4 × A100 78TF/s 4 × A100 78TF/s 6 × V100 94TF/s



Scaling on Edinburgh Tursa / Jülich Booster

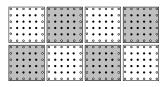
Nodes	GPUs	Measured Perf / GPU	Measured TF/s	Ideal GPU scaling	Ideal Node scaling
1	1	3.85	3.85	3.85	
1	4	3.075	12.3	15.4	12.3
16	64	1.671875	107	246.4	196.8
64	256	1.484375	380	985.6	787.2

DDHMC refresher

Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD

Martin Lüscher

CERN, Physics Department, TH Division CH-1211 Geneva 23, Switzerland



- small domains 4⁴ to 6⁴
- HMC MD integrate gauge action and local determinants for each domain without communication
- Fits within L2 cache of a CPU core
- Small cell provides IR regulator for Dirichlet Dirac solves
- Exterior boundary gauge links are frozen (cross domain and in surface plane)

- hep-lat/0409106
- Partition the lattice into hypercuboids
- Colour them black and white according to parity
- Call "white" domain Ω and complement $\bar{\Omega}$
- Schur factoring the Fermion determinant leaves local and non-local terms that can be integrated on different timescales.

$$D = \left(\begin{array}{cc} D_{\Omega} & D_{\partial} \\ D_{\bar{\partial}} & D_{\bar{\Omega}} \end{array}\right)$$

 $\det D = \det D_{\Omega} \det D_{\bar{\Omega}} \det \left\{ 1 - D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} D_{\bar{\partial}} \right\},\,$

Boundary determinant

• Handling the Schur complement "boundary" determinant requires care

$$\chi = 1 - D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} D_{\bar{\partial}}$$

Can restrict to exterior boundary of Ω

$$R = \mathbb{P}_{\bar{\partial}} - \mathbb{P}_{\bar{\partial}} D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} D_{\bar{\partial}}$$

• because in the right basis χ takes the form

$$\chi = \left(\begin{array}{cc} 1-X & 0 \\ Y & 1 \end{array} \right)$$

so det $\chi = \det R = \det(1 - X)$

• For pseudofermion action $\phi^{\dagger}_{\bar{\partial}}(RR^{\dagger})^{-1}\phi_{\bar{\partial}}$,

$$R^{-1} = \hat{\mathbb{P}}_{\bar{\partial}} - \hat{\mathbb{P}}_{\bar{\partial}} D^{-1} \hat{D}_{\bar{\partial}}$$

- $\delta R^{-1} = \mathbb{P}_{\bar{\partial}} D^{-1} \delta D D^{-1} D_{\bar{\partial}}.$
- Pauli-Villars (or Hasenbusch) requires

$$\phi_{\bar{\partial}}^{\dagger} P^{\dagger} R^{-\dagger} R^{-1} P \phi_{\bar{\partial}}.$$

and $\delta R = \mathbb{P}_{\bar{\partial}} D_{\Omega}^{-1} (\delta D_{\Omega}) D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} D_{\bar{\partial}} + \mathbb{P}_{\bar{\partial}} D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} (\delta D_{\bar{\Omega}}) D_{\bar{\Omega}}^{-1} D_{\bar{\partial}}.$

Symmetric domain shapes

• Luscher's domain structure

																		_					
•	٠	٠	٠	٠	•	٠	0	0	0	0	٠	٠	٠	٠	٠	٠	٠	٠	0	0	0	0	٠
						0					0							0					0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
•	•	•	•	٠	•	0	•	•	٠	•	0	•	•	٠	•	•	•	0	•	٠	•	•	0
•	٠	٠	٠	٠	•	0	٠	٠	٠	٠	0	٠	٠	٠	٠	٠	٠	0	٠	٠	٠	٠	0
				•		~			•		0			•				0					0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
•	٠	٠	٠	٠	•	•	0	0	0	0	•	•	٠	٠	٠	٠	•	•	0	0	0	0	•
•	0	0	0	0	•	•	٠	٠	٠	٠	•	٠	0	0	0	0	•	٠	٠	٠	٠	٠	•
					~							~					~						
- T	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
0	٠	٠	٠	٠	0	•	٠	٠	٠	٠	•	0	٠	٠	٠	٠	0	•	٠	٠	٠	٠	•
0	٠	٠	٠	٠	0		٠	٠	٠	٠	•	0	٠	٠	٠	٠	0		٠	٠	٠	٠	•
6					~							~					~						
10						-	-	-	-	-			-	-	-	-	-						
•	0	0	0	0	٠	٠	٠	٠	٠	٠	•	٠	0	0	0	0	٠	٠	٠	٠	٠	٠	•
1																							

- Boundary pseudofermion lives on the interior boundary of Ω
- · Spin structured: sites on only one face are spin projected
 - Red dots are four component pseudofermion
 - Open dots are two component pseudofermion
- Schur Factoring around Ω or Ω dictates where pseudofermion "lives" ⇒ choice creates asymmetry in the forces on gauge links Ω or Ω
 - · Easiest to see in 1D where all boundary sites are spin projected

Large domain DDHMC

• GPU's offer large parallelism within the node

- 32⁴ or greater subvolume per domain
- Local solves can outstrip the network.
- Node 10x(?) faster than Booster, network 1.5x faster (?)
- Domain decompose HMC on large domains
- Cell local Dirichlet determinants are "obvious"
 - Create an adaptor for any Grid Fermion operator that zeroes gauge links, removes communication
 - Standard two flavour pseudofermion action otherwise.
 - Local determinant equally ill conditioned as light solve → this is exactly what GPU's are good at!
- Will also change subdomain shapes

Domain Wall force

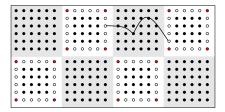
Normal equations on 5D system uses single solve in force

 $\phi^{\dagger} (M^{\dagger} M)^{-1} \phi$

- Can also be used for local determinant
- Boundary projector means number of solves is doubled (normal equations twice)

$$\delta\left(\phi_{\bar{\partial}}^{\dagger} R^{-\dagger} R^{-1} \phi_{\bar{\partial}}\right) = 2 \mathrm{Re} \langle R^{-1} \phi_{\bar{\partial}} | \mathbb{P}_{\bar{\partial}} D^{-1} \delta D D^{-1} D_{\bar{\partial}} \phi_{\bar{\partial}} \rangle$$

- Must have a good integrator timestep ratio between local and boundary determinants
- Force is suppressed by two light quark propogators
 - · Can suppress force arbitrarily by using a broader band of inactive links
 - · Short distance propagator is not dictated by pion mass



Non-symmetric domain shapes

$$S_{\text{Pseudofermion}} = \phi_{\Omega}^{\dagger} (D_{\Omega}^{\dagger} D_{\Omega})^{-1} \phi_{\Omega} + \phi_{\bar{\partial}}^{\dagger} (R^{\dagger} R)^{-1} \phi_{\bar{\partial}}$$

									•	•	•		•		•	•	•			•	•		•
	٠	0	0	0	٥	0	0	0	٥	٠	•	•	٠	0	0	٥	0	0	0	٥	٥	٠	•
٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	0	•	•	٥	٠	٠	٠	٠	٠	٠	٠	٠	0	٠
٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	۰	•	•	۰	٠	٠	٠	٠	٠	٠	٠	٠	0	•
٠	٥	٠	٠	٠	٠	٠	٠	٠	٠	0	•	•	٥	٠	٠	٠	٠	٠	٠	٠	٠	٥	٠
٠	٥	٠	٠	٠	٠	٠	٠	٠	٠	٥	•	•		٠	٠	٠	٠	٠	٠	٠	٠	٥	•
•	٥	٠	٠	٠	٠	٠	•	•	٠	0	•	•		٠	٠	٠	٠	٠	٠	٠	٠	٥	•
•	0	:	:	:	:	:	:	:	:	°	:	•	-	:	:	:	:	:	:	:	:	°	-
:	0	:	:	:	:	:	:	:	:	0	:	:	-	:	:	:	:	:	:	:	:	0	:
									•				ě			•				•		•	
	÷		•	•					•	÷	-	•		•	•	•		•	•	•	•		-
									-		-	-	-		-					-	-		-
												_											
			•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•		•	
:		-	•	•	•	•	•	•	•	•	:	:	-	•	•	•	•	•	•	•		•	-
-		-	•	• • •	•	•	•	•	•	•	-	-	•	•	•	•	•	•	•	•		-	-
•	•	-	• •	• •	• •	• •	•	•	•		•	•	•	•	•	•	•	•	•	•		•	:
•	•	-	• • •	• • •	• • •	• • •	•	•	•	0	:	•	• 0 0 0	• •	•	•	• • •	• •	•	•		•	:
•	• 0 0 0 0	-	• • •	• • •	• • •	• • •	•	•	• • •	0 0	•	•	• 0 0 0 0	• • •	• • •	• • •	• • • • •	• • •	• • •	• • •		• • •	•
•	• 0 0 0 0 0	-	• • • •	• • • •	• • • •	• • • • •	• • • • •	• • • • •	• • •	000		•	• 0 0 0 0 0	• • • •	• • • •	• • •	• • • • • •	• • • •	• • • •	• • • • •		• • • •	•
••••••	• 0 0 0 0 0 0	-	• • •	• • •	• • •	•	• • •	• • •	• • • • •	0 0 0 0 0 0	•	•	• • • • • • • • • •		• • • • • •	• • • • •	•		• • • • • •	• • • • • •	•••••	• • • • • • • • • •	•
••••••	• • • • • • • • • • • •	-	• • • • • • •	• • • • • • •	• • • • • •	• • • • • • •	• • • • • • •	• • • • • •	• • • • • • •	0 0 0 0 0 0 0	•	•	• 0 0 0 0 0 0 0	• • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • •	•••••	• • • • • • • • • • • •	•
••••••	• 0 0 0 0 0 0		• • • • • • • •	••••••	•••••	••••••	•••••	•••••	•••••	0 0 0 0 0 0	•	•	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • •	•
••••••	• 0 0 0 0 0 0 0 •	-	• • • • • • • •	• • • • • • • •	•••••	••••••	•••••	• • • • • • • •	•••••	0 0 0 0 0 0 0	•	•	• • • • • • • • • • • •	• • • • • • • •	••••••	•••••	••••••	••••••	••••••	• • • • • • • • •	•••••	• • • • • • • • • • • •	•

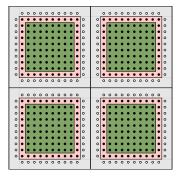
Large Domain DDHMC domain structure

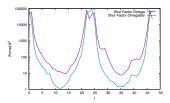
- Boundary pseudofermion lives on the interior boundary of Ω (or Ω
- · Spinor structure: sites on only one face are spin projected

	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
٥	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
	٥	٥	٥	٥	٥	٥	٥	٥	٥	٥			٥	٥	٥	٥	٥	٥	٥	٥	٥	٥	
	-	_	_	_	_	_	_		_	_		-	_		_	_	_		_	_	_	_	-
	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	с
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
0				٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
	•																						
0	•	•	•	٠	٠	٠	٠	٠	٠	٠	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	c
	:	:	:	:	:	:	:	:	:	:	0 0	0	:	:	:	:	:	:	:	:	:	:	
0	:	:	:	:	:	:	:	:	:	:		-	:	:	:	:	:	:	:	:	:	:	c
0	•••••	•••••••••••••••••••••••••••••••••••••••	•	:	:	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	::	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	0	0	:::::::::::::::::::::::::::::::::::::::	:	:	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	:	:	:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	::	0 0 0 0

- $\det D_{\Omega}$ is local to a node and maximally large
- Freeze all links in Ω
 , do not need to compute detD_Ω

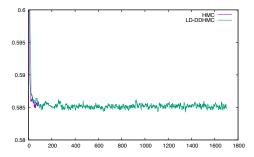
- HMC slow zone close to boundary
 - scale the HMC time evolution in a coordinate dependent way
 - power law "slow down" in red zone
 - Counterbalance rise in propagator





$16^3 \times 48$ 2f test

- DWF+lwasaki 2 flavor: $\beta = 2.13, 16^3 \times 48, m_f = 0.01, L_s = 16$
- Produced on 2 GPUs
- 3:1 ratio of boundary determinant to local determinant timesteps
 - Omelyan integrator (2 force evaluations in nesting)
 - Adequate hierarchy in integration
- Wall clock gain depends on interconnect performance; believe this work is a substantial factor on Aurora
- Strange quark / odd flavours are a work in progress. May just use EOFA.



Clearly need more statistics on reference, but looks OK Evolution is solid and plaquette in low stats agreement with

- 2f Grid run of same ensemble
- Plausibly close to historic 2+1f u/d/s plaquette

Summary and outlook

- Large domain DDHMC is ideal to decouple islands of high performance in future GPU systems
 - Conjecture up 10x acceleration of local domain solves (?)
 - Precise, algorithmically efficient determinant factorisation: SAP local multigrid smoother increases fine matrix multiplies vs. polynomial smoothers
- · Can be combined with multigrid on the large domain, and on the full lattice solve
- Can also consider multilevel integration
 - no in-principle barrier for DWF
 - N^2 valence measurements \Rightarrow For DWF need a better valence solver scheme as we have not yet achieved the Wilson multigrid speed-up N^2 Lanczos deflation prohibitive
- Fall of propagator with distance and computer architecture trends make this a guaranteed win in long run
- Expect it to win on Aurora
- Master field simulation proposals increase the need as we go to bigger volumes, fewer configurations.
 - Caution: must still thermalise and decorrelate, so running for many times the thermalisation time will always be sensible.
 Pre-thermalising on smaller volume; periodic replication; rethermalise may help address.