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• Domain Wall Multigrid

• Large domain DDHMC for GPUs

• Goal: enable 2+1+1f simulations, 4GeV cut off



  

The RBC & UKQCD collaborations
UC Berkeley/LBNL
Aaron Meyer

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Peter Boyle (Edinburgh)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christopher Kelly
Meifeng Lin
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

CERN
Andreas Jüttner (Southampton)

Columbia University
Norman Christ
Duo Guo
Yikai Huo
Yong-Chull Jang
Joseph Karpie
Bob Mawhinney
Ahmed Sheta
Bigeng Wang
Tianle Wang
Yidi Zhao
 

University of Connecticut
Tom Blum
Luchang Jin (RBRC)
Michael Riberdy
Masaaki Tomii

Edinburgh University
Matteo Di Carlo
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tim Harris
Raoul Hodgson
Nelson Lachini
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
James Richings
Azusa Yamaguchi
Andrew Z.N. Yong

KEK
Julien Frison

University of Liverpool
Nicolas Garron

Michigan State University
Dan Hoying

Milano Bicocca
Mattia Bruno

Peking University
Xu Feng

University of Regensburg
Davide Giusti
Christoph Lehner (BNL)

University of Siegen
Matthew Black
Oliver Witzel

University of Southampton
Nils Asmussen
Alessandro Barone
Jonathan Flynn
Ryan Hill
Rajnandini Mukherjee
Chris Sachrajda

University of Southern Denmark
Tobias Tsang

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)



Domain Wall Multigrid

• Preprint: https://arxiv.org/pdf/2103.05034.pdf

• Spectrum of DWF makes coarsening nearest
neighbour operator hard

• Polynomial approximation to 1
z in region of

complex plane enclosing origin
• Typically solve normal equations on positive

definite M†M
• Nearest neighbour coarsenings of γ5R5Ddwf

(Herm, indefinite)

• Novel chebyshev polynomial setup of multigrid

• Result:
Set up and solve twice Ddwf faster than red-black CG

• HMC focus; use compressed Lanczos for valence
analysis

Comparison of Domain Wall Fermion Multigrid Methods

Peter Boyle
HET Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA. and

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK

Azusa Yamaguchi
School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK

We present a detailed comparison of several recent and new approaches to multigrid solver algo-
rithms suitable for the solution of 5d chiral fermion actions such as Domain Wall fermions in the
Shamir formulation, and also for the Partial Fraction and Continued Fraction overlap. Our focus
is on the acceleration of gauge configuration sampling, and a compact nearest-neighbour stencil is
required to limit the calculational cost of obtaining a coarse operator. This necessitates the coars-
ening of a nearest neighbour operator to preserve sparsity in coarsened grids, unlike HDCG[1]. We
compare the approaches of references[2, 3] and also several new hybrid schemes. In this work we
introduce a new recursive Chebyshev polynomial based multigrid setup scheme. We find that the
approach of reference[2], can both setup and then solve twice standard Shamir domain wall fermions
faster than a single solve with red-black preconditioned Conjugate Gradients[29] on large volumes
near the physical up/down quark masses and for modern GPU systems such as the Summit su-
percomputer. This is promising for the acceleration of HMC, particularly if setup costs are shared
across multiple Hasenbusch determinant factors. The setup scheme is likely generally applicable to
other fermion actions.
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Large domain DDHMC for GPUs

Motivation:

• GPU speed is increasing rapidly over time

• Interconnect speeds are not keeping pace.

• Expense spent on interconnect is significant

• If we get nearer commodity pricing, this will
be even worse

• Project 30% efficiency on future systems

• GPU cache sizes are growing

• DWF reuses gauge links Ls times
• DWF reuses spinors 2Nd times
• ⇒ cache bound performance on a

single node

• Interconnect will rapidly become bottleneck



System balance

System GPUs Node peak FP32 Node interconnect
(GB/s Snd+Rcv)

Booster/Jülich 4 x A100 78TF/s 200GB/s

Tursa/Edinburgh 4 x A100 78TF/s 200GB/s

Summit 6 x V100 94TF/s 50GB/s

Aurora 6 x Intel Xe ≥ 130TF/s fp64 300-400GB/s
≥ 260TF/s fp32 300GB/s to GPU’s?
(conjectured 2x)

Benchmarking Tursa – multiple RHS Wilson operator
• 112 nodes of ATOS Sequana XH2000 with 4x A100-40 GPUs per node
• 2x AMD Rome 7H12 CPUs
• 1TB Ram
• 4 x HDR-200 infiniband per node
• Good (but not perfect) scalability
• This was the Edinburgh procurement benchmark
• ~80% of runtime of Grid Domain Wall QCD code
• Overlaps communication with computation
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Future machines will not scale with current algorithms
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DDHMC refresher

• hep-lat/0409106

• Partition the lattice into hypercuboids

• Colour them black and white according to
parity

• Call “white” domain Ω and complement Ω̄

• Schur factoring the Fermion determinant
leaves local and non-local terms that can be
integrated on different timescales.

D =

(
DΩ D∂
D∂̄ DΩ̄

)

det D = det DΩ det DΩ̄ det
{

1− D−1
Ω D∂D

−1

Ω̄
D∂̄

}
,
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Schwarz-preconditioned HMC algorithm

for two-flavour lattice QCD

Martin Lüscher
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Abstract

The combination of a non-overlapping Schwarz preconditioner and the Hybrid Monte Carlo

(HMC) algorithm is shown to yield an efficient simulation algorithm for two-flavour lattice

QCD with Wilson quarks. Extensive tests are performed, on lattices of size up to 32×243,

with lattice spacings a " 0.08 fm and at bare current-quark masses as low as 21 MeV.

1. Introduction

At present, perhaps the greatest obstacle in lattice QCD is the fact that the efficiency

of the established simulation algorithms rapidly decreases when the continuum limit

is approached and the masses of the light quarks are scaled towards their physical

values [1–11]. The dynamics of these algorithms is still not fully understood, but it is

quite clear that the poor scaling behaviour is driven by the condition number of the

lattice Dirac operator, which grows inversely proportionally to the lattice spacing

and the quark mass.

Preconditioning is usually perceived as a technique for the efficient solution of ill-

conditioned systems of linear equations [12]. This kind of preconditioning is routinely

applied in lattice QCD to accelerate the solver for the lattice Dirac equation. While

the solver is a central element of the HMC simulation algorithm [13], it is also

possible to precondition this algorithm itself, using another preconditioner perhaps,

by factorizing the quark determinant into the determinants of the preconditioners

and the preconditioned Dirac operator. The magnitude of the quark force terms in

1

Fig. 1. Two-dimensional cross-section of a 24 × 123 lattice covered by non-overlap-

ping 64 blocks Λ. The domains Ω and Ω∗ are the unions of the black and white blocks

respectively, and their exterior boundaries ∂Ω and ∂Ω∗ consist of all points in the

complementary domain represented by open circles.

It is often convenient to let these operators act on quark fields that are defined on

the whole lattice rather than on Ω or Ω∗ only. The extension is done in the obvious

way by padding with zeros so that eq. (3.1), for example, may be written as

D = DΩ + DΩ∗ + D∂Ω + D∂Ω∗ . (3.2)

Similarly the further decompositions into block operators read

DΩ + DΩ∗ =
∑

all Λ

DΛ, (3.3)

D∂Ω =
∑

black Λ

D∂Λ, D∂Ω∗ =
∑

white Λ

D∂Λ, (3.4)

where DΛ denotes the Wilson–Dirac operator on the block Λ with Dirichlet boundary

conditions and D∂Λ the sum of the hopping terms that move the field components

on the exterior boundary ∂Λ of the block Λ to its interior boundary points.

3.2 Quark determinant

The factorization

detD = det DΩ detDΩ∗ det
{

1 − D−1
Ω D∂ΩD−1

Ω∗ D∂Ω∗

}
(3.5)

is now deduced from the block structure (3.1) as in the case of the even–odd precon-

ditioning considered in subsect. 2.1. However, contrary to what might be suspected,

the operator in the curly bracket is not quite the same as the Schwarz-preconditioned

7

• small domains 44 to 64

• HMC MD integrate gauge action and local
determinants for each domain without
communication

• Fits within L2 cache of a CPU core

• Small cell provides IR regulator for Dirichlet
Dirac solves

• Exterior boundary gauge links are frozen
(cross domain and in surface plane)



Boundary determinant

• Handling the Schur complement “boundary” determinant requires care

χ = 1− D−1
Ω D∂D

−1

Ω̄
D∂̄

• Can restrict to exterior boundary of Ω

R = P∂̄ − P∂̄D
−1
Ω D∂D

−1

Ω̄
D∂̄

• because in the right basis χ takes the form

χ =

(
1− X 0
Y 1

)
so detχ = det R = det(1− X )

• For pseudofermion action φ†
∂̄

(RR†)−1φ∂̄ ,

R−1 = P̂∂̄ − P̂∂̄D
−1D̂∂̄

• δR−1 = P∂̄D
−1δDD−1D∂̄ .

• Pauli-Villars (or Hasenbusch) requires

φ
†
∂̄
P†R−†R−1Pφ∂̄ .

and δR = P∂̄D
−1
Ω (δDΩ)D−1

Ω D∂D
−1

Ω̄
D∂̄ + P∂̄D

−1
Ω D∂D

−1

Ω̄
(δDΩ̄)D−1

Ω̄
D∂̄ .



Symmetric domain shapes

• Luscher’s domain structure

• Boundary pseudofermion lives on the interior boundary of Ω

• Spin structured: sites on only one face are spin projected

• Red dots are four component pseudofermion
• Open dots are two component pseudofermion

• Schur Factoring around Ω or Ω̄ dictates where pseudofermion “lives”
⇒ choice creates asymmetry in the forces on gauge links Ω or Ω̄

• Easiest to see in 1D where all boundary sites are spin projected



Large domain DDHMC

• GPU’s offer large parallelism within the node

• 324 or greater subvolume per domain
• Local solves can outstrip the network.
• Node 10x(?) faster than Booster, network 1.5x faster (?)
• Domain decompose HMC on large domains

• Cell local Dirichlet determinants are “obvious”

• Create an adaptor for any Grid Fermion operator that zeroes gauge links, removes
communication

• Standard two flavour pseudofermion action otherwise.
• Local determinant equally ill conditioned as light solve
−→ this is exactly what GPU’s are good at!

• Will also change subdomain shapes



Domain Wall force

• Normal equations on 5D system uses single solve in force

φ
†(M†M)−1

φ

• Can also be used for local determinant

• Boundary projector means number of solves is doubled (normal equations twice)

δ
(
φ
†
∂̄
R−†R−1

φ∂̄

)
= 2Re〈R−1

φ∂̄ |P∂̄D−1
δDD−1D∂̄φ∂̄〉

• Must have a good integrator timestep ratio between local and boundary determinants

• Force is suppressed by two light quark propogators

• Can suppress force arbitrarily by using a broader band of inactive links
• Short distance propagator is not dictated by pion mass



Non-symmetric domain shapes

SPseudofermion = φ
†
Ω

(D
†
Ω
DΩ)−1

φΩ + φ
†
∂̄

(R†R)−1
φ
∂̄

Large Domain DDHMC domain structure

• Boundary pseudofermion lives on the interior boundary of Ω
(or Ω̄)

• Spinor structure: sites on only one face are spin projected

• detDΩ is local to a node and maximally large

• Freeze all links in Ω̄, do not need to compute detDΩ̄



• HMC slow zone close to boundary

• scale the HMC time evolution in a coordinate dependent way
• power law “slow down” in red zone
• Counterbalance rise in propagator
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163 × 48 2f test
• DWF+Iwasaki 2 flavor: β = 2.13, 163 × 48,mf = 0.01, Ls = 16

• Produced on 2 GPUs

• 3:1 ratio of boundary determinant to local determinant timesteps
• Omelyan integrator (2 force evaluations in nesting)
• Adequate hierarchy in integration

• Wall clock gain depends on interconnect performance; believe this work is a substantial factor
on Aurora

• Strange quark / odd flavours are a work in progress. May just use EOFA.
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Summary and outlook

• Large domain DDHMC is ideal to decouple islands of high performance in future GPU
systems

• Conjecture up 10x acceleration of local domain solves (?)
• Precise, algorithmically efficient determinant factorisation:

SAP local multigrid smoother increases fine matrix multiplies vs. polynomial smoothers

• Can be combined with multigrid on the large domain, and on the full lattice solve

• Can also consider multilevel integration

• no in-principle barrier for DWF
• N2 valence measurements
⇒ For DWF need a better valence solver scheme as we have not yet achieved the
Wilson multigrid speed-up
N2 Lanczos deflation prohibitive

• Fall of propagator with distance and computer architecture trends make this a guaranteed
win in long run

• Expect it to win on Aurora

• Master field simulation proposals increase the need as we go to bigger volumes, fewer
configurations.

• Caution: must still thermalise and decorrelate, so running for many times the
thermalisation time will always be sensible.
Pre-thermalising on smaller volume; periodic replication; rethermalise may help address.


