The truncated $U(1)$ Abelian Higgs model and implication for its quantum simulation

Jin Zhang

University of Iowa
With: Shan-Wen Tsai (UC-Riverside), Yannick Meurice (Ulowa)
J. Unmuth-Yockey (Fermilab), J. Zeiher (Max Planck Institute), A. Bazavov (MSU)

LATTICE 2021
10.1103/PhysRevB.103.245137.
10.1103/PhysRevLett.121.223201.

Motivation

- Truncations are needed in quantum simulation of models with continuous symmetry.
- For example: a proposal for quantum simulating the Abelian Higgs model in the field representation uses a multi-leg ladder (J. Zhang et al. 2018).
- Question: What are the truncation effects in the charge representation?

Outline

- The charge and field representations with a finite spin truncation.
- The truncated field representation of $\mathrm{O}(2)$ model is gapped.
- The dependence of the phase transition point on the spin truncation in the charge representation of $\mathrm{O}(2)$ model.
- Compare different methods to detect BKT transitions (next talk).
- Data collapse for the energy gap at nonzero gauge coupling in the charge representation.

Abelian Higgs model (compact sQED)

On the $L \times L_{\tau}$ Euclidean space-time lattice, the action of the compact sQED is

$$
\begin{aligned}
S= & -\beta_{p l} \sum_{x} \cos \left(A_{x, \hat{s}}+A_{x+\hat{s}, \hat{\tau}}-A_{x+\hat{\tau}, \hat{s}}-A_{x, \hat{\tau}}\right) \\
& -\beta_{\tau} \cos \left(\theta_{x+\hat{\tau}}-\theta_{x}+A_{x, \hat{\tau}}\right)-\beta_{s} \cos \left(\theta_{x+\hat{s}}-\theta_{x}+A_{x, \hat{s}}\right)
\end{aligned}
$$

By expanding the weights with modified Bessel functions, the path integral formulation is written as

$$
e^{-S_{e f f}}=\sum_{\left\{m_{\square}\right\}}\left\{\prod_{\square} t_{m_{\square}}\left(\beta_{p l}\right) \prod_{x}\left[t_{n_{x, s}}\left(\beta_{s}\right) \times t_{n_{x, \uparrow}}\left(\beta_{\tau}\right)\right]\right\}
$$

Where $n_{x, \hat{s}}=m_{\text {below }}-m_{\text {above }}, n_{x, \hat{\tau}}=m_{\text {right }}-m_{\text {left }}$ (Gauss's Law). $t_{n}(x)=I_{n}(x) / I_{0}(x), I_{n}(x)$ is the nth order modified Bessel function of the 1st kind.

Hamiltonians in charge and field representations

- Using $n s$ and taking $a_{\tau} \rightarrow 0$, we obtain the Hamiltonian in the charge representation,

$$
\begin{equation*}
\hat{H}_{c}=\frac{W}{2} \sum_{1 \leq j, k<L} c_{j k} \hat{S}_{j}^{z} \hat{S}_{k}^{z}+\frac{Y}{2} \sum_{l=1}^{L+1}\left(\hat{S}_{l}^{z}\right)^{2}-\frac{X}{2} \sum_{i=1}^{L}\left(\hat{U}_{l}^{+} \hat{U}_{l+1}^{-}+\hat{U}_{l}^{-} \hat{U}_{l+1}^{+}\right) \tag{1}
\end{equation*}
$$

where $W=1 / \beta_{p l} a_{\tau}, c_{j k}=L+1-\max \{j, k\}, Y=1 / \beta_{\tau} a_{\tau}$, $X=\beta_{S} / a_{\tau}, \hat{U}^{ \pm}|n\rangle=|n \pm 1\rangle$.

- Replacing $n s$ by $m s$, or using $\hat{S}_{l}^{z}=\hat{\bar{S}}_{l}^{z}-\hat{\bar{S}}_{l-1}^{z}$ and $\hat{\bar{U}}_{l}^{+}=\hat{U}_{l+1}^{-} \hat{U}_{l}^{+}$, we go to the field representation,

$$
\begin{equation*}
\hat{H}_{f}=\frac{W}{2} \sum_{p=1}^{L}\left(\hat{\bar{S}}_{p}^{z}\right)^{2}+\frac{Y}{2} \sum_{p=1}^{L+1}\left(\hat{\bar{S}}_{p}^{z}-\hat{\bar{S}}_{p-1}^{z}\right)^{2}-X \sum_{p=1}^{L} \hat{\bar{U}}_{p}^{x} \tag{2}
\end{equation*}
$$

$S_{0}^{z}=S_{L+1}^{z}=0$ for OBC in the charge-0 sector. The charge-1
sector: $\left(\hat{\bar{S}}_{L / 2+1}^{z}-\hat{\bar{S}}_{L / 2}^{z}\right)^{2} \rightarrow\left(\hat{\bar{S}}_{L / 2+1}^{z}-\hat{\bar{S}}_{L / 2}^{z}-1\right)^{2}$.

$\mathrm{O}(2)$ limit: field representation with $|m|_{\max }=S$

- The energy gap converges exponentially with S.

Figure: $L=64, Y=1.126$. The solid lines are fit to $A \exp (-\alpha S)+\boldsymbol{c}$.

Figure: Entanglement entropy
$S_{\text {vN V.s. }} Y$ for $S=1,2,3,4$, saturates at $L_{0} \approx 2^{3}, 2^{5}, 2^{7}, 2^{9}$.

- Field representation has no quantum phase transitions for finite S.

$\mathrm{O}(2)$ limit: charge representation with $|n|_{\max }=1$

Spin-1 truncation: BKT critical line to large- D phase. Level crossing between ground states in sectors $(M, P)=(0,1),(0,-1)$.

Figure: Left: Phase diagram of spin-1 truncation with $J_{z} S_{l}^{z} S_{l+1}^{z}$ term, $D=Y$ (Chen, Hida and Sanctuary, 2003). Right: level crossing between ground states in two parity sectors.

$\mathrm{O}(2)$ limit: charge representation with $|n|_{\max }=S$

Level crossing between excitations $(M, k, P)=(4,0,1),(0,0,1)$ (Nomura \& Kitazawa, 1998).

Figure: The extrapolation procedure of finite size Y_{c} for $S=1$ (left) and $S=2$ (right). The degeneracy signals a BKT point with $\mathrm{SU}(2)$ symmetry.

Locating BKT transitions: level spectroscopy

- Y_{c} converges exponentially with S for $\hat{U}^{ \pm}$
- Y_{c} converges polynomially with S for $\hat{S}^{ \pm}$

	$\hat{U}^{ \pm}$	$\hat{S}^{ \pm}$
$S=1$	$0.35066928(2)$	$0.35066928(2)$
$S=2$	$1.101304(6)$	$0.932201(4)$
$S=3$	$1.125614(17)$	$1.03308(3)$
$S=4$	$1.125898(19)$	$1.07103(2)$
$S=5$		$1.08952(3)$
$S=\infty$	$1.126188(13)$	$1.12614(8)$

Figure: Phase transition points Y_{c} for different S. The $\hat{U}^{ \pm}$operators are replaced by $\hat{S}^{ \pm} / \sqrt{S(S+1)}$ in the second column.

Nonzero $\beta_{p l}$: the observable, field representation

PRL 121, 223201 (2018)
Polyakov loop: a Wilson loop wrapped around the temporal direction of the lattice. This operator:

- is a product of gauge fields in the time direction.

$$
\hat{P}=\prod_{n=1}^{L_{\tau}} \exp \left(i \hat{A}_{X^{*}+n \hat{\tau}, \tau}\right)
$$

- is an order parameter for confinement in gauge theories.
- has a continuous-time limit which adds a term to the Hamiltonian

$$
\begin{aligned}
\hat{H}_{f} & \rightarrow \hat{H}_{f}^{\prime}=\frac{W}{2} \sum_{p=1}^{L}\left(\hat{\bar{S}}_{p}^{z}\right)^{2}+\frac{Y}{2} \sum_{p \neq \frac{L}{2}}^{\prime}\left(\hat{\bar{S}}_{p+1}^{z}-\hat{\bar{S}}_{p}^{z}\right)^{2} \\
& +\frac{Y}{2}\left(\hat{\bar{S}}_{\frac{L}{2}+1}^{z}-\hat{\bar{S}}_{\frac{L}{2}}^{z}-1\right)^{2}-X \sum_{p=1}^{L} \hat{\bar{U}}_{p}^{x}
\end{aligned}
$$

0	1	1	0	0
0	1	1	1	0
0	1	0	0	0
0	1	1	0	0
0	1	1	0	0
Space				

P-loop: universal function + collapse across limits

PRL 121, 223201 (2018)

1	1	1	0	0
1	1	1	1	0
1	1	0	0	0
1	1	1	0	0
1	1	1	0	0

Data collapse of $N_{s} \Delta E$ defined from the insertion of the Polyakov loop (lower set) or with 1-0 boundary conditions (upper set) (collapse of 24 data sets each). The black solid line is $\sqrt{\left(g N_{s} / 4\right)^{2}+0.25}$.

P-loop: data collapse in charge representation

The universal function depends on X for fixed Y for small S.

Spin-1 truncation, OBC, $Y=0.25$

Spin-3 truncation, OBC, $Y=0.25$

Spin-2 truncation, OBC, $Y=0.25$

Spin-4 truncation, OBC, $Y=0.25$

Experimental proposal

Cold atoms on multi-leg ladder with Rydberg-dressed interaction

$$
\begin{align*}
& \\
\hat{H}_{f}= & \frac{W}{2} \sum_{p=1}^{L}\left(\hat{\bar{S}}_{p}^{z}\right)^{2}+\frac{Y}{2} \sum_{p=1}^{L+1}\left(\hat{\bar{S}}_{p}^{z}-\hat{\bar{S}}_{p-1}^{z}\right)^{2}-X \sum_{p=1}^{L} \hat{\bar{U}}_{p}^{x}, \\
\hat{H}_{\text {ladder }}= & -\frac{J}{2} \sum_{i=1}^{L} \sum_{m=-s}^{s-1}\left(\hat{a}_{m, i}^{\dagger} \hat{a}_{m+1, i}+h . c\right)-\sum_{i=1}^{L} \sum_{m=-s}^{s} \epsilon_{m, i} \hat{n}_{m, i} \\
& +\sum_{i, i^{\prime}=1}^{L} \sum_{m, m^{\prime}=-s}^{s} V_{m, m^{\prime}, i, i^{\prime}} \hat{n}_{m, i} \hat{n}_{m^{\prime}, i^{\prime}}
\end{align*}
$$

Conclusions

- The field representation of the $\mathrm{O}(2)$ model is always gapped for finite S. But we will not need a big S to probe the finite size effects accurately.
- The charge representation has true quantum phase transitions. The phase transition is an infinite-order Gaussian transition for $S=1$, and is a true BKT transition for $S \geq 2$.
- The phase transition point converges exponentially with S for $\hat{U}^{ \pm}$ operators, while it converges algebraically for $\hat{S}^{ \pm}$operators.
- Calculations of the Polyakov loop at finite L and small gauge coupling show a universal behavior in both charge and field representations (collapse related to the BKT transition of the limiting $O(2)$ model).
- A ladder of cold atoms with L rungs, one atom per rung, and $2 S+1$ legs is a candidate system for experimental realization of the full sQED.

