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Lattice QCD Observables are Correlated
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Lattice QCD Observables are Correlated

• Correlation between neutron 2-pt 
correlation function and that calculated in 
presence of CEDM interaction
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• Correlation between proton
3-pt and 2-pt correlation functions

Using the correlation, values of the unmeasured (and expensive) observables 
can be predicted from the values of the measured (and cheap) observables
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Prediction of Lattice QCD Observables using ML
• Assume M indep. measurements
• Common observables 𝑿! on all M

Target observable 𝑂! on first N

Machine

𝐹

Input: 𝑿! = (𝑜!", 𝑜!#, 𝑜!$, … )

Output:      𝑂!

1) Train machine F to yield 𝑂! from 𝑿!
on the Labeled Data

2) Predict 𝑂! of the Unlabeled data from 𝑿!
𝑭(𝑿!) = 𝑂!" ≈ 𝑂!

N M-N

(𝑿! , 𝑂!) (𝑿!)

[Labeled Data] [Unlabeled Data]
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Error Quantification of Inexact ML Predictions
• ML predictions are not exact; introduces bias

𝑂" = #
$
∑!𝑂!" ≠ 𝑂 = #

$
∑!𝑂!

• Unbiased average using small portion of labeled data

• Similar structure of truncated solver method (Bali, Collins, Schaefer, 2009)
or all-mode averaging (Blum, Izubuchi, Shintani, 2012)

• Expectation value, (𝑂%& = 𝑂!" + 𝑂! − 𝑂!" = 𝑂!
• BC term converts systematic error of prediction to statistical uncertainty

Nt M

(𝑿!, 𝑂!) (𝑿!)

[Training Data]
Nb

[Bias Correction (BC) Data]

(𝑿!, 𝑂!)

[Unlabeled Data]
#𝑂!" =

1
𝑀

(
#∈%&'()*'*+

𝑂#, +
1
𝑁-

(
#∈!"

𝑂# − 𝑂#,
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Applications
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(a) Labeled Data (b) DM (c) Pred.[C2pt] (d) Pred.[C2pt,C3pt(12)]
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Prediction of 𝑪𝟑𝒑𝒕 from 𝑪𝟐𝒑𝒕

Prediction of 𝑪𝟐𝒑𝒕𝐂𝐏𝐕 from 𝑪𝟐𝒑𝒕

Prediction of  Kaon quasi-PDF 𝑧 = 4 from 𝑧 < 4
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ML Regression using D-Wave Quantum Annealer

• Most ML algorithms involve optimization problems; many of them 
rely on stochastic approaches, but expensive for large problems

• D-Wave quantum annealer can be used as a fast and accurate
optimizer for ML optimization problems
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D-Wave Quantum Annealer
• Hamiltonian

𝐻 = −
𝐴 𝑠
2

1
!

2𝜎"
!

+
𝐵 𝑠
2

1
!

ℎ! 2𝜎#
! +1

!$%

𝐽!,% 2𝜎#
! 𝜎#

(%)

• ℎ", 𝐽",$: biases and coupling strengths  that 
user can set to their problem parameters
• After annealing at < 15 mK, QPU returns low-

energy solution (spin up/down of quantum 
bits) of the Ising model Hamiltonian
• Large number of reads is required to obtain 

minimum energy solution for large problems, 
but each read takes 𝑂 10 𝜇𝑠
• ML typically needs only near-optimal solution
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Sparse Coding

• Unsupervised ML algorithm
• Find dictionary 𝚽 ∈ ℝ8×$! and sparse representation �⃗� : ∈ ℝ$! from 

which input data �⃗� : ∈ ℝ8 can be reconstructed by  
�⃗� % ≈ 𝚽�⃗� % = 𝑎"

% �⃗�" + 𝑎;
: 𝑣; +⋯+ 𝑎#

: 𝑣#
• The representation is sparse because the 𝜆-term enforces a minimal set of 

dictionary elements for the reconstruction of a given input data
• Optimization in �⃗� : of 𝑙<-norm function is a highly non-convex problem

min
%

+
&'(

)

min
*(")

1
2
𝑋 & −𝚽�⃗� &

+ + 𝜆 �⃗� &
,
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Sparse Coding on D-Wave quantum annealer

• The sparse coding problem can be mapped onto D-Wave by

𝐻 ℎ,𝑸, �⃗� =(
#

𝑎#ℎ# +(
#23

𝑄#3𝑎#𝑎3

ℎ = −𝚽4𝑋 + 𝜆 +
1
2 , 𝑸 =

1
2Φ

4Φ

• On D-Wave, 𝑎" is restricted to binary: �⃗� & ∈ 0,1 -$

• D-Wave finds �⃗� & minimizing 𝐻

• Optimization for Φ is performed offline (on classical computers)

min
%

+
&'(

)

min
*(")

1
2
𝑋 & −𝚽�⃗� &

+ + 𝜆 �⃗� &
,

10



Inpainting

• Inpainting: restorative conservation where damaged, deteriorating, or missing parts of 
an artwork are reconstructed as it was originally created
• Sparse coding works as an inpainting algorithm because the reconstruction
𝑋 & ≈ 𝚽�⃗� & fills up the missing pixels based on the correlation pattern 𝚽 learned

Ground Truth Data with Missing Pixels Inpainted Results

Nvidia AI Playground - Inpainting
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Sparse Coding Regression on D-Wave

• Goal: prediction of 𝑦 from 𝒙 = {𝑥(, 𝑥+, … , 𝑥.}
• Procedure:

1) Obtain 𝚽𝟎 ∈ ℝ*×,! of 𝒙 from unlabeled data
2) Extend 𝚽𝟎 to 𝚽 ∈ ℝ(*-.)×,! and encode correlation 

between 𝒙 and 𝑦 in Φ using augmented vector {𝒙, 𝑦}
3) For unknown 𝑦, reconstruct new vector {𝒙, E𝑦} using Φ; 

reconstruction replaces E𝑦 with its prediction

• This approach is a semi-supervised learning as it 
utilizes unlabeled data to improve prediction

• D-Wave is used for optimization in �⃗� &
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Prediction of 𝑪𝟐𝒑𝒕𝐂𝐏𝐕 from 𝑪𝟐𝒑𝒕

• Currently, the performance is limited by the maximum number of qubits available 
on D-Wave, but the predictions applied on lattice QCD data look promising

Nga Nguyen, Garrett Kenyon, BY, Sci. Rep. 10, 10915 (2020)
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Lossy Data Compression for Lattice QCD

• Modern lattice QCD simulations produce
O(PetaBytes) of data that need to be stored for future analysis

• Exploiting correlation between the data components 
can reduce storage requirement → Machine learning

• Reconstruction error sufficiently smaller than the observables statistical 
fluctuation is good enough for most of the analysis → Lossy compression
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Lossy Data Compression Algorithm
• Goal: find 𝚽 ∈ ℝ.×-$ and �⃗� & ∈ 0,1 -$ precisely reconstructing 

input vectors 𝑋 & ∈ ℝ. such that 𝑋 & ≈ 𝚽�⃗� & ≡ 𝑋′ &
Ø𝚽 is common for all 𝑘 = 1,2,3, … , 𝑁, so memory usage is small
ØEach vector �⃗� 5 can be stored in 𝑁6 bits

ØStoring �⃗� 5
578
9

, 𝚽 for 𝑋 5
578

9
: compression of 𝐷 floating-point numbers into 𝑁6 bits

ØCorrelation between 𝑋#, encoded in 𝚽, allows precise reconstruction with 𝑁6 ≪ 32𝐷

• Such solutions of 𝚽 and �⃗� & can be obtained by solving

min
/

1
01.

,

min
2(#)

�⃗� 0 −𝚽�⃗� 0 3

ØFinding binary solution of 𝒂 𝒌 is an NP-hard problem but can be solved using D-Wave
ØFinding 𝚽 is done on classical computers with stochastic optimizer
ØIterate �⃗� 5 - and 𝚽-optimizations until it reaches the minimum reconstruction error
ØNeed standardization of 𝑋 5 beforehand if the data exhibits heteroskedasticity
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Bias Correction of Lossy Reconstruction
• Lossy reconstruction introduces error 𝑋 & ≠ 𝚽�⃗� & ≡ 𝑋′ &

Simple average is a biased estimator 𝑓(𝑋) ≠ (
-
∑& 𝑓 𝑋′ &

• Unbiased estimator of 𝑓(𝑋) can be defined using small portion of original data

LO =
1
𝑁
1
01.

,

𝑓 �⃗�′ 0 +
1
𝑁45

1
01.

,%&

𝑓 �⃗� 0 − 𝑓 �⃗�′ 0

• Quality of lossy-compression on statistical data

Q3 ≡
1
𝐷
1
!1.

* 𝜎6'76'(
3

𝜎6'
3

ØSmaller Q; indicates the better compression

ØIncrease of statistical error due to bias correction is proportional to  <
;<()

Q;

Øeg) With 10% of bias correction data (𝑁-=/𝑁=0.1) and compression of Q; = 0.01, 
original data is typically reconstructed within 5% statical error increase
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Compression of Lattice QCD data
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• Compression of “4 timeslices ⨉ 4 src-sink separations” 
of vector and axial-vector nucleon 3pt correlators

• Compression performance of the new algorithm 
outperforms those based on principal component 
analysis (PCA) or neural-network autoencoder

• Results from D-Wave simulated annealing; real QPU gives 
worse performance due to noise in h and J parameters

• PCA and NN-Autoencoder with single-precision (32bits) codes
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BY, Nga Nguyen, Jason Chang, Chia Cheng Chang, Ermal Rrapaj, will appear on arXiv soon 16



• Outlier detection
• An input data with large reconstruction error can be marked anomalous
• Could find events of new physics or data corruption

• Cheaper operations in 𝒂-space (�⃗� : ≈ 𝚽�⃗� : )
• Operations on floating-point numbers 𝑋 & can be replaced by those on 

single-bit coefficients �⃗� & with much cheaper computational cost
• eg 1) sum of vectors

• eg 2) sum of 𝑙+-norm squares

More Use of Binary Compression Algorithm
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Summary

• Developed a new regression algorithm utilizing D-Wave quantum 
annealer and showed promising results in predicting unmeasured 
lattice QCD observables

• Developed a new data compression algorithm utilizing D-Wave 
quantum annealer and showed a good performance in compressing 
lattice QCD observables
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