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Abstract

We construct a tensor network representation of the partition function for the massless Schwinger model on
a two dimensional lattice using staggered fermions. The tensor network representation allows us to include a
topological term. Using a particular implementation of the tensor renormalization group (HOTRG) we calculate
the phase diagram of the theory. For a range of values of the coupling to the topological term θ and the gauge
coupling β we compare with results from hybrid Monte Carlo when possible and find good agreement.

Motivation

In low dimensions tesnor network formulations can avoid the usual sign problems associated with negative or
complex probability weights that plague Monte Carlo approaches, and can yield very efficient computational
algorithms. For compact fields the general strategy has been to employ character expansions for all Boltzmann
factors occurring in the partition function and subsequently to integrate out the original fields, yielding an
equivalent formulation in terms of integer—or half-integer—valued fields. Typically local tensors can be built
from these discrete variables and the partition function recast as the full contraction of all tensor indices.
However, writing local tensors for models with relativistic lattice fermions is more complicated.One reason is
tied to the Grassmann nature of the fermions which can induce additional, non-local sign problems which may
be hard to generate from local tensor contractions. However, Gattringer et. al. have shown in Ref. [1] that
a suitable dual formulation can be derived in the case of the massless Schwinger model which is free of these
sign problems. Using this dual representation they have formulated a general Monte Carlo algorithm that can
be used to simulate the model even in the presence of non-zero chemical potential and topological terms [2].

Dual representation in terms of loops and dimers

We start with staggered action for fermions and standard Wilson gauge action. The first step is integration of
Grassmann variables site by site.
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This can be written as a sum over loops and dimers as follows

ZF =

1
2


V ∑
l,d

(−1)NL+1
2

∑
l L(l)+∑

lW (l)×
∏
l

 ∏
x,µ∈l

Ukµ(x)
µ (x)

 . (2)

Now we expand the gauge action in terms of modified Bessels and dual characters. The link integration leads
to the constraint

∫ π
−π
dA`

2π
ei(mp−mp′+k`−k̄`)A` = δmp−mp′+k`−k̄`,0. (3)

This allows us to write the partition function as
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∏
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where tensor T encodes all possibilities of Grassmann integrations at a given site.
We define

Amimjkak̄akbk̄b
≡ δmi−mj+ka−k̄a,0δka,kbδk̄a,k̄b. (5)

Bm1m2m3m4 = Im(β)only if m1 = m2 = m3 = m4 = m (6)
These definitions of the A and B tensors allow us to write the partition function as follows,

Z = ∑
{k,k̄}

∑
{mp}

∏
p
Bmimjmkml


∏
l
Amimjkak̄akbk̄b

×
∏
x
Tkak̄akbk̄bkck̄ckdk̄d

 . (7)
Starting with tensorM which is defined as
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′
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. (8)
we use HOTRG algorithm to extract different observables.
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Figure 1: Left: Elementary tensors T , A, and B. When these tensors are contracted in the pattern shown here the world-line representation of the partition function is generated exactly. Right:Construction of tensorM
shown as the four tensors sharing the blue loop. This is a possible single tensor which can be contracted with itself recursively to generate the partition function.

Numerical Results
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Figure 2: 〈UP (x)〉
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Figure 3: 〈Q〉
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Figure 4: 〈Q〉 quenched
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Figure 5: 〈Q〉 quenched
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