Field-Transformation HMC algorithm

University of Connecticut / RIKEN BNL Research Center

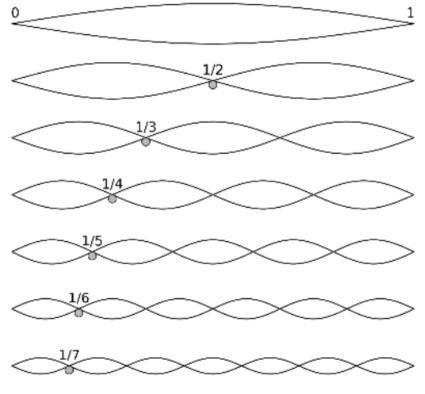
Hybrid Monte Carlo (HMC) algorithm

 Standard algorithm to generate gauge configurations in simulations.

$$\langle \mathcal{O}(U) \rangle_{\text{QCD}} = \frac{1}{\mathscr{Z}} \int \mathscr{D}U \exp(-S(U)) \mathcal{O}(U)$$

where S is the action, e.g. $S_{\text{Wilson}} = \beta \sum_{P} \operatorname{Re} \frac{1}{3} \operatorname{tr} (1 - U_P)$ • We evolve a system with the following Hamiltonian

$$H = \sum_{i} \frac{1}{2} \pi_i^2 + S(U)$$


Every trajectory, we reinitialize the canonical momentum independent Gaussian random numbers of uniform widt enough trajectories, the gauge field U will follow the des distribution.

• With dynamical fermions

$$\int \mathscr{D} U \mathscr{D} \phi \exp\left(-S(U) - \phi^{\dagger} \frac{1}{D^{\dagger} D(U)} \phi\right)$$

Critical slowing down

• When the lattice spacing is small, QCD configuration has wave-length, perturbative modes.

 These modes will oscillate with frequencies inversely pro the amplitudes of the modes. As an example, for a simple oscillator system

$$H_{\rm SHO} = \frac{1}{2}p^2 + \frac{1}{2}\omega^2 x^2 = \frac{1}{2}p^2 + \frac{1}{2}\frac{1}{A^2}x^2$$

For QCD, the amplitudes of the modes is proportion to t wavelength of the modes.

Question: How far should we integrate the system to de Answer: Depends on the wavelength - disaster!

Luchang Jin ljin.luchang@gmail.com

	Lüscher's trivializing map
lattice QCD	$V = U_0$
(4)).	U_{ϵ}
(5) m π_i with	$\begin{array}{c} & & \\$
dth. After	In Ref [1], M. Lüscher showed that
esired	• There are field transformations that which trivia is, the action after the transformation is consta
	$S_{FT}(V) = S(\mathscr{F}(V)) - \ln \det \mathscr{F}$
(6) a lot of short	 The Wilson flow trivializes the Wilson action pu β is small. One can calculate the trivializing trans order perturbatively as an expansion in β. Use the (approximate) trivializing transformation
	Numerical test on pure gauge QCD (4D)
	Topological charge in $8^3 \times 16$ lattice $a = 0.2$ fm DBW2 ac 9 7 $\tau = 0$ $\tau = 0$
roportion to ole harmonic	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(/)	$\begin{array}{c c} 2 \\ 1 \\ - \end{array} \end{array} \xrightarrow{2} \\ - \end{array}$
the	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	MD time unit
decorrelate?	Use discrete Wilson flow as the field transformation

- Peter Boyle

Use discrete Wilson flow as the field transformation (Stout smearing). The flow time is τ .

U = J

$$\mathcal{D} \operatorname{Uexp}\left(-S(U)\right) \mathcal{O}(U)$$

$$= \int \mathcal{D} \operatorname{V} \det\left(\mathscr{F}_{*} = \frac{\partial U(V)}{\partial V}\right) \exp\left(-S(\mathscr{F} V)\right) \mathcal{O}(\mathscr{F} V) \qquad (2)$$

$$= \int \mathcal{D} \operatorname{V} \exp\left(-S_{\mathrm{FT}}(V)\right) \mathcal{O}(\mathscr{F} V) \qquad (3)$$

$$\int \mathscr{D} \cup \mathscr{D} \phi \exp\left(-S(\cup) - \phi^{\dagger} \frac{1}{D^{\dagger} D(\cup)} \phi\right)$$
$$= \int \mathscr{D} \vee \mathscr{D} \phi \det(\mathscr{F}_{*}) \exp\left(-S(\mathscr{F} \vee) - \phi^{\dagger} \frac{1}{D^{\dagger} D(\mathscr{F} \vee)} \phi\right) \quad (9)$$
force in HMC transform in the following way:
$$F(U) = -\frac{\partial}{\partial U} \left(S(U) + \phi^{\dagger} \frac{1}{D^{\dagger} D(U)} \phi\right) \quad (10)$$

The all` í

$$F_{\text{FT}}(V) = F(\mathscr{F}V)\mathscr{F}_* + \frac{\partial}{\partial V}\det(\mathscr{F}_*)$$
(11)

h trivializing the theory. That constant.

 $\det \mathscr{F}_*(V)$ (8)

tion pure gauge theory when ing transformation order by

rmation in HMC may reduce d formulas are given.

(4D)

BW2 action

Outlook

- Test the algorithm with dynamical fermions.
- Analytical calculation of the trivializing map to higher orders.
- Machine learn the transformation (many emerging works).
- MIT group has constructed a machine learned transformation which approximately trivialize the QCD gauge field. [2].
- Xiao-Yong Jin's talk at 13:45 Thu. Machine learn the transformation for FT-HMC in 2D U(1) case.

Acknowledgements

We would like to thank Tom Blum, Peter Boyle, Norman Christ, Taku Izubuchi, Xiao-Yong Jin, Chulwoo Jung, James Osborn, and other RBC-UKQCD and ECP collaborators for helpful discussions and support. Computations for this work were carried out on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy.

References

- 074504 (2021) doi:10.1103/PhysRevD.103.074504 [arXiv:2008.05456 [hep-lat]].

Field transformation HMC with dynamical fermions

- Sam Foreman's poster on 2D U(1) FT-HMC with machine learned transformations.

[1] M. Luscher, Commun. Math. Phys. **293**, 899-919 (2010) doi:10.1007/s00220-009-0953-7 [arXiv:0907.5491 [hep-lat]]. [2] D. Boyda, G. Kanwar, S. Racanière, D. J. Rezende, M. S. Albergo, K. Cranmer, D. C. Hackett and P. E. Shanahan, Phys. Rev. D **103**, no.7,