# EFFICIENCY STUDY OF OVERRELAXATION AND STOCHASTIC OVERRELAXATION ALGORITHMS FOR SU(3) LANDAU GAUGE-FIXING 

## University of São Paulo

jesuel.leal@usp.br

## Introduction

To obtain gauge dependent quantities on the lattice, like the propagators, need to fix the gauge of configurations $U=\left\{U_{\mu}(n)\right\}$. For Landau gauge $\left(\partial_{\mu} A_{\mu}=0\right)$ done by maximizing functional

$$
\begin{equation*}
\mathcal{E}[g] \equiv \frac{1}{d N_{c}|\Lambda|} \sum_{\mu=1}^{d} \sum_{n \in \Lambda} \frac{1}{2} \operatorname{tr}\left[U_{\mu}^{(g)}(n)+U_{\mu}^{(g) \dagger}(n)\right], \tag{1}
\end{equation*}
$$

where $U_{\mu}^{(g)}(n) \equiv g(n) U_{\mu}(n) g^{\dagger}(n+\hat{\mu})$, with respect to $\mathcal{G}=\{g(n)\}$. Since the algorithms considered are local, we define a local version of this functional

$$
\begin{equation*}
\mathcal{E}[g(n)]=\frac{1}{d N_{c}|\Lambda|} \operatorname{tr}[g(n) h(n)], \tag{2}
\end{equation*}
$$

where $h(n) \equiv \sum_{\mu=1}^{d}\left(U_{\mu}(n) g^{\dagger}(n+\hat{\mu})+U_{\mu}^{\dagger}(n-\hat{\mu}) g^{\dagger}(n-\hat{\mu})\right)$.
We consider a config gauge-fixed if

$$
\begin{equation*}
\frac{1}{|\Lambda|} \sum_{n \in \Lambda} \sum_{b=1}^{N_{c}^{2}-1}\left(\nabla_{\mu} A_{\mu}^{b}(n)\right)^{2}<10^{-12} . \tag{3}
\end{equation*}
$$

For $\mathrm{SU}(2), g(n)=h^{\dagger}(n) / \sqrt{\operatorname{det} h(n)}$ maximizes local functional.
For SU(3) we take $g^{\text {new })}(n)=A(n) g^{(\text {old })}(n)$ with $A=T . S . R . R, S$ e $T$ are $\mathrm{SU}(2)$ matrices embedded in $\mathrm{SU}(3)$ matrix, calculated following the $\mathrm{SU}(2)$ method. $g(n)$ maximizes local functional asymptotically and iteratively. Number of iterations is free parameter of optimization.
To speed up the gauge-fixing procedure, we can also use modified versions of the algorithm (see below).


#### Abstract

Overrelaxation (OR) Instead of A(n) use $A^{\omega}(n)$ with $1<\omega<2$ $A^{\mathrm{OR}}(n)=\operatorname{Proj}_{\mathrm{SU}(3)} \sum_{m=0}^{\infty} \frac{\Gamma(\omega+1)}{\Gamma(\omega+1-m) m!}(A-\mathbb{1})^{m}$,


and $\omega$ is another parameter of optimization.

Stochastic Overrelaxation (SOR)
Instead of $A(n)$ use stochastic process
$A^{\text {SRE }}(n) \equiv \begin{cases}A(n) & \text { with probability } 1-p \\ (A(n))^{2} & \text { with prest }\end{cases}$
and $p$ is another parameter of optimization.

## Optimization

Optimization of the number of iterations shows that 2 hits is best if extra time to do extra hit is taken into account.


Figure 1: Optimization of \# of iterations for SOR on a $4^{4}$ lattice. Similar results for OR and larger lattices.
A sample of 200 configs ( 100 configs for $16^{4}$ lattice) generated by heat bath algorithm with puregauge Wilson action, allowed us to obtain optimal parameters for OR and SOR by looking at distribution of sweeps until gauge-fixed.

Constant physics analysis gives the dynamical critical exponent of the algorithms. The best fit of the form $C N^{z}$ gives $C=14(2)$ and $z=1.06(5)$ for OR and $C=14.7(8)$ and $z=1.13(2)$ for SOR, much better than the $z=2$ for the original method.


Lattice linear size and $\beta$

Figure 2: Gauge-fixing at constant physics

## Conclusion

- OR and SOR reduce critical exponent from $z=2$ of the original algorithm to $z \approx 1$ using optimal parameters
- 2 iterations is enough to reduce substantially \# of sweeps needed to fix the gauge
- more than 2 iterations do not contribute to further reduce \# of sweeps to fix the gauge
- OR performs betten than SOR for SU(3)


## References

[1] Ph. de Forcrand. Multigrid Techniques for Quark Propagator. Nucl. Phys. B Proc. Suppl., 9:516-520, 1989.
[2] J. E. Mandula and M. Ogilvie. Efficient gauge fixing via overrelaxation. Physics Letters B, 248(1):156-158, 1990.
[3] H. Suman and K. Schilling. A comparative study of gauge fixing procedures on the connection machines cm 2 and cm5. Parallel Computing, 20(7):975-990, 1994.
[4] A. Cucchieri and T. Mendes. Critical slowing down in SU(2) Landau gauge fixing algorithms at beta = infinity Comput. Phys. Commun., 154:1-48, 2003

## Future Research

- Research on Landau-gauge propagators for gluons and quarks in the vacuum being conducted;
- Two-point functions at high-temperature;
- Project to calculate three-point functions in the vacuum and at high-temperature on the

Acknowledgment
Jesuel Marques has been supported by grant \#2019/10913-0, São Paulo Research Foundation (FAPESP). Matheus Cerqueira acknowledges support of CNPq.

