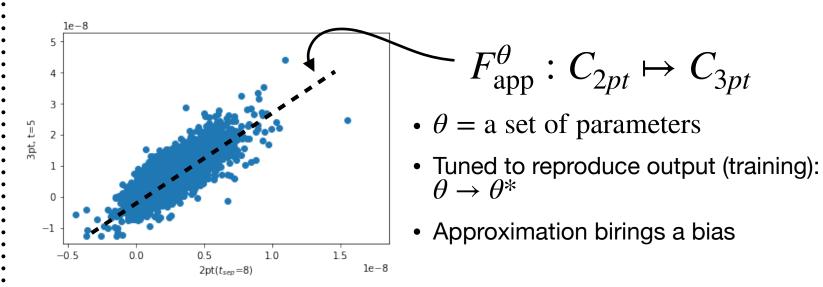

Joseph Carolan, Connelly Andrew, Taku Izubuchi, Luchang Jin, Chulwoo Jung, Christopher Kelly, Meifeng Lin, Sergey Syritsyn

Machine Learning Approximated Nucleon Matrix Elements with Domain Wall Fermions

1. Introduction


Nucleon charges are important but expensive

- A lot of contractions, inversions are needed
- 2pt is relatively easy
- B. Yoon et al. [1] used machine learning techniques to predict 3pt functions from 2pt functions with bias corrections
- We apply their method to Domain-wall fermion (DWF) data [2], which has better symmetry.

2. Machine learning?

• Data determines an approximate map (function) \sim Fitting.

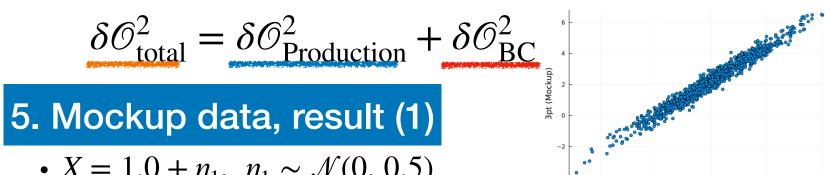
- We examine, linear regressior (LR), boosted decision tree (BDT) regressor in scikit-learn library. (Others can be done similar way)
- First we determine parameters, and calculate 3pt functions with fixed parameter
- Above plot suggests, better conservation law gives better results?

3. Bias correction

Trained machine brings bias, which can be canceled by bias correction term [1, 3],

$$\overline{C}_{3pt} = \frac{1}{N_{\mathrm{Prod}}} \sum_{c=1}^{N_{\mathrm{Prod}}} F_{\mathrm{app}}^{\theta*}(C_{2pt}^c) + \begin{bmatrix} \frac{1}{N_{\mathrm{BC}}} \sum_{c=1}^{N_{\mathrm{BC}}} C_{3pt}^c - \overline{F}_{\mathrm{app}}^{\theta*}(C_{2pt}) \end{bmatrix}$$

$$\begin{array}{c} \mathrm{ML\ approximated} \\ \mathrm{Input\ 2pt} \\ = \mathrm{Cheap} \end{array} \qquad \begin{array}{c} \mathrm{Bias\ correction} \\ \mathrm{Input\ 2pt\ \&\ 3pt} \\ = \mathrm{Expensive} \end{array}$$


- If we take expectation value, it becomes exact
- We divide data in following way

Production	N_{Prod}	ВС	$N_{ m BC}$	Training $N_{ m Tr}$
2pt only			2pt& 3p	t

If total error is small under $N_{\text{Prod}} > N_{\text{BC}} + N_{\text{Tr}}$, we get gain

4. Error evaluation: Super-jackknife

- B. Yoon er al [1] used the bootstrap
- We use super-jackknife. Each term are calculated by Jackknife

- $X = 1.0 + \eta_1, \ \eta_1 \sim \mathcal{N}(0, 0.5)$
- $y = \alpha X + \eta_2$, $\eta_2 \sim \mathcal{N}(0, 0.1)$, $\alpha = 2.2$; $\langle y \rangle = 2.2$
- To examine, we evaluate error by repeating independent sampling Ntr = 200, NBC = 300, Nprod = 5000

Model	# of rep	Mean	Std of mean	δProd	δΒC	δtotal
Linear Reg.	100	2.200788	0.027386	0.021980	0.018366	0.028643
Linear Reg.	1000	2.199523	0.028720	0.022006	0.018343	0.028648
Linear Reg.	10000	2.199757	0.028185	0.022013	0.018322	0.028640
↑ Consistent! = Correctly evaluated ↑						<u> </u>

6. Results for Mockup data (2)

Model	# of rep	Mean	Std of mean	δProd	δΒC	δtotal
BDT	100	2.201785	0.031220	0.021855	0.021431	0.030609
BDT	1000	2.198973	0.029970	0.021913	0.021295	0.030556
BDT	10000	2.200112	0.030557	0.021889	0.021348	0.030576

- Both linear reg. and BDT cases, error is correctly evaluated
- In particular, error from training is not appeared
- Even data is non-linear case, this methodology works (skipped)

7. Lattice setup

- DWF on L = 24^3 x 64 x 16. m = 0.005, mpi ~ 330 MeV, Iwasaki gauge action beta = 2.13 [2].
- 200 configs (5 skipped), 64 measurements on each configurations.
- Input, all time separation of 2pt (t_sep = 0,1,2,..., 18), and determine C3pt (t = 8)
- 80% production data: 10%(Training): 10%(BC) = 10240: 1280: 1280
- Examine 3 point function for the vector channel

8. Results for actual data (Preliminary)

- Actual results for 3pt ($N_{\rm data}$ = 12800 is used) = 0.140 +/- 0.002
- LR ($N_{BC} + N_{Tr} = 2560$) = 0.140 +/- 0.002, ($\delta \mathcal{O}_{BC}$:0.0017, $\delta \mathcal{O}_{prod}$: 0.0096)
- BST ($N_{BC} + N_{Tr} = 2560$) = 0.140 +/- 0.002, ($\delta \mathcal{O}_{BC}$:0.0018, $\delta \mathcal{O}_{prod}$: 0.0096)
- # of data for 3pt function is small but error is smaller than the original evaluation

9. Summary

- 3 point functions are correctly reproduced and error are correctly
- Future: Finite momentum (=form factor), Different channels
- How large gain is?

Reference

- 1. B. Yoon et al., https://arxiv.org/abs/1807.05971
- 2. Y.Aoki et al., https://arxiv.org/abs/1011.0892
- 3. Eigo Shintani et al., https://arxiv.org/abs/1402.0244