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Abstract
We study the high temperature transition in pure
SU(3) gauge theory and in full QCD with 3D-
convolutional neural networks trained as parts of ei-
ther unsupervised or semi-supervised learning prob-
lems. The code used is available [1].

Method
We build 3D-convolutional autoencoders to classify
Polyakov loops configurations at different tempera-
tures using TensorFlow and Keras. An autoencoder
is a compound of two neural networks: an encoder
that reduces the input information, for example to
a single number, and a decoder, which reconstructs
the input data from the compressed data. Here, the
encoder processes the information contained in the
Polyakov loops configuration to a single number,
named Encoded classifier (see Figure below).

The autoencoder is trained, as a whole, to repro-
duce as output its own input. When this is achieved,
the encoded classifier effectively “encodes” the most
important feature(s) describing the variety of the
input. The mapping of the input to the encoded
classifier, however, can be arbitrarily complicated
and impossible to read for humans. To address
this problem, one can perform a “semi-supervised”
training by pinning some of the input configura-
tions at extreme temperatures to predefined labels.
In such a scheme, the unlabelled configurations
similar to those pinned somewhere in the latent
space, are clustered together, defining a human-
understandable “meaning” for the encoded space.
Assuming lattice configurations simulated at differ-
ent temperatures are mainly distinguished by their
degree of disorder, an autoencoder may provide an
effective order parameter for an arbitrary lattice
configuration, independently of the underlying the-
ory.

Pure SU(3) gauge theory
In the case of pure SU(3) gauge theory, the mean Polyakov loop is an exact order parameter for confinement. We study 83×4 lattice configurations generated using
the MILC public code [2]. Training the autoencoder as an unsupervised and semi-supervised classification problem we obtain an encoded classifier clearly related
to the order parameter. Indeed, two classes are identified by the encoded classifier below and above Tc. The unsupervised scheme highlights the Z3 symmetry
breaking, while the semi-supervised training strengthens the correlation of the encoded classifier with the order parameter.
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Standardized Polyakov loop
In order to ensure that the network is learning from the texture on the lattice
rather than simply averaging the Polyakov loops on each simulation, we define
a standardized Polyakov loop. Being µi the mean value of the i-th Polyakov
loop configuration P (i), σi =

√∑
abc |P (i)

abc − µi|2/2× 83 the components of

the i-th standardized configuration are: P̃ (i)
abc = (P

(i)
abc − µi)/σi.

Despite a slight loss in precision, the network is still perfectly able to identify
the presence of a phase transition at T ∼ Tc.
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Quantum Chromodynamics
In the case of QCD, the Polyakov loop is no longer an order parameter. The full QCD configurations are from simulations of Nf = 2 + 1 + 1 Wilson fermions at
maximal twist on a lattice of 323 space dimension [3]. We study the semi-supervised problem with the Polyakov loop and its standardized version. The distinction
of the two classes appears close to the critical temperature.
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Conclusion
We probed the capability of Convolutional Neural Networks trained as either unsupervised or semi-
semisupervised classifiers to identify different phases of gauge theories. We observe a crossover between
the two phases at the expected temperature in a pure gauge theory and a qualitatively similar behavior in
full QCD. A finer temperature scan, finite-size scaling and continuum limit will improve the performance
of the autoencoder, providing further insight into ML approaches to the study of phase transitions.
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