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Introduction

Using quantum computers to perform simulaধons of field theories has the potenধal advantage of enabling a

direct computaধon of the fermionic spectrum. As a first step we simulate the Schwinger model Hamiltonian

with a θ-term using staggered fermions. We consider adiabaধc state preparaধon and the Quantum Approxi-

mate Opধmizaধon Algorithm, studying their convergence properধes and costs in terms of CNOT gates. We

conclude with results based on a blocked system that has a beħer scaling behavior with the dimensionality

of the problem.

Model Description

We consider the Schwinger model [1], a U(1) gauge theory in 1 + 1 dimension, with the inclusion of a

θ-term [2]. The Lagrangian can be wriħen as

L = −1
4
FµνF

µν + gθ

4π
εµνF

µν + iψ̄γµ(∂µ + igAµ)ψ −mψ̄ψ

with the gamma matrices for 1 + 1 dimensions being γ0 = σ3, γ1 = iσ2, γ5 = γ0γ1 and the field tensor Fµν
takes the usual form. The gauge invariance of the Hilbert space is obtained by imposing the Gauss law:

0 = −∂1Ȧ1 − gψ̄γ0ψ

Discreধzaধon and Pauli Hamiltonian

We discreধze the spaধal direcধon on a 1D laষce ofN sites and laষce spacing a using staggered fermions [3,

4] (a full descripধon of the setup can be found in [5])
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Where φn = −agA1(an) and Ln = −Ȧ1(an)
g while the fermions have been translated into a pair of one-

component spinors such that: χn√
a

= ψu(an) for n even and χn√
a

= ψd(an) for odd n. Applying open boundary

condiধons and solving Gauss’s law one obtains:

Ln = L0 + 1
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)
.

At this point one can safely set L0 = 0 by redefining θ and also absorb the gauge fields into the fermionic

field as an addiধonal phase: χn →
∏
l<n

[
e−iφl

]
χn The final hamiltonian in terms of spin variables can be

wriħen as: H = HZZ +H± +HZ where:
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where we defined the constants w = 1
2a and J = ga

2 and (Xn, Yn, Zn) are the Pauli matrices at site n

Adiabatic State Preparation and QuantumApproximate Optimization Algorithm

In order to study the properধes of the system on a physical quantum hardware one needs an efficient

method to prepare the wavefuncধon of states. Since the state preparaধon is just the first part of a quantum

algorithm, it is important to make sure that to prepare the desired state one uses as few quantum operaধons

as possible.

Adiabaধc State Preparaধon

Adiabaধc State Preparaধon (ASP) [6] is a well established method for state preparaধon. Its fundamental idea

is to first solve a system that is simpler than the target one, but for which state preparaধon is trivial. One

then slowly changes the Hamiltonian of the system to match that of the full problem. For example, in this

work, following Ref. [5], we considered the iniধal hamiltonianH0 = HZZ +HZ|m→m0,θ→0, which is very simple

to analyze. Its ground state is a product state of alternaধng spins up and down. To obtain the ground state

of our Schwinger model one needs to repeatedly apply an approximate ধme evoluধon operator.

In the simplest case on defines this operator as U(t) = e−iHA(t)δt where HA(t) is the adiabaধc hamiltonian,

which interpolates between H and H0 by making the constants w, θ and m ধme dependent.

Quantum Approximate Opধmizaধon Algorithm

The Quantum Approximate Opধmizaধon Algorithm (QAOA) [7] is a quantum opধmizaধon algorithm that

can be used also for state preparaধon. It relies, just as ASP, on the existence of a simple trivially solvable

Hamiltonian to use as a starধng point. The ansatz for the state is given by:

|ψN(−→γ ,
−→
β )〉 = e−iβNH0e−iγNH . . . e−iβ2H0e−iγ2He−iβ1H0e−iγ1H

The problem is reduced to finding the opধmal values for −→γ ∗ and
−→
β ∗ such that |ψN(−→γ ∗,

−→
β ∗)〉 is a good

approximaধon of the desired state. For this work we used simulated annealing, minimizing the energy of

the system, as in a variaধonal problem.

Numerical Results

(a) (b)

Figure 1. Simulaধon of ASP of a N = 4 system with J = 0.5,m0 = 0.5,m = 0, w = 1, theta = 1 The different series represent
different adiabaধc ধme spacings: linear, sin2 (taking more dense points at the beginning and end of the ASP) and cos2 (taking
more dense points at the end of the evoluধon), with different troħerizaধon scheme orders. The simulaধon is done using the

Qiskit package from IBM. Leđ plot: energy of the system, the exact line represents the results obtained from exact

diagonalizaধon of the adiabaধc hamiltonian at every ধme point. Right plot: overlap between the evolved state and the exact

ground state of the adiabaধc hamiltonian obtained from full diagonalizaধon at every ধme t.

Our findings using ASP are that with 10 ধme steps one can easily find the ground state of the system with

99% accuracy. It is also worth noধcing that the cos2 ধme spacing seems to give the overall best results

already with first order troħerizaধon, meaning that is more important to evolve more precisely the state in

the last steps, where the hamiltonian is closer to the full one. However, as seen from table 1, the number

of quantum gates required are presently too large for any pracধcal purpose.

QAOA Results

The QAOA method has the advantage to permit to set the number of steps in the evoluধon to a very small

number, provided one can find the opধmal parameters for such evoluধon. For instance, for the same systems

shown before we obtained comparable results with just two steps, table 1.

Method # of Steps Troħer Scheme # of CNOT/Qubit E0 GS Overlap

ASP linear 10 1st order 45 -1.7140 0.9827

ASP sin2 10 1st order 45 -1.6751 0.9599

ASP cos2 10 1st order 45 -1.7144 0.9827

ASP linear 10 2nd order 75 -1.7089 0.9729

ASP sin2 10 2nd order 75 -1.7204 0.9847

ASP cos2 10 2nd order 75 -1.7260 0.9880

QAOA 2 2nd order 18 -1.7353 0.9975

QAOA 3 2nd order 27 -1.7357 0.9977

Table 1. Comparison of final states from ASP and QAOA for the same system as in fig. 1. Calculaধon are performed using the

Qiskit sođware package from IBM [8].

The issue with QAOA is that the minimizaধon problem needs to be solved either classically or with a

quantum algorithm. Solving it classically is feasible only for small systems, solving it on quantum hardware

can be expensive and limited by noise. Therefore, to make the algorithm scale beħer an opধon is to use

custom opধmized 2-qubit gates [9]. However, since the hamiltonian is non local because of the interacধon

and boundary term, this cannot be done trivially.

Our proposal is to first solve a blocked system, then stack such blocks and use them as a starধng point for

further opধmizaধon. For example the N = 4 case would be composed of 2 non interacধng blocks of 2
qubits each, thus providing a much beħer starধng Hamiltonian than just H0, and consequently improving

scaling considerably. In table 2 we report the results for an opধmized blocked N = 4 system and the

results for larger ones obtained using the opধmal parameters of the N = 4 case without further
opধmizaধon. These simulaধon consist of 2 steps of blocked QAOA (which can be turned into just 2 opধmal

gates per step) and a final step with the full hamiltonian.

N # CNOT/qubit E0 E0/EExaact GS Overlap

4* 19 (10.5) -1.7263 0.9931 0.9924

6 24 (16.6) -3.4072 0.9926 0.9872

8 28.5 (21) -5.6292 0.9926 0.9780

10 32.8 (23.2) -8.3265 0.9930 0.9676

Table 2. QAOA Blocked with 2 + 1 steps, meaning 2 blocked and 1 fully connected step, for the same parameters as in table 1.

The results for the N = 4 are obtained ađer parameter opধmizaধon, the results for N = 6, 8, 10 are have been computed using

the same opধmal parameters for N = 4. The number of qubits in parenthesis represents the amount of CNOTs gates required if

opধmal custom gates are used.

Summary and Outlook

We found that it is possible to efficiently prepare the ground state of a Schwinger model with θ-term us-

ing both Adiabaধc State Preparaধon and Quantum Approximate Opধmizaধon Algorithm. With the first

method one is limited by the number of two-qubit gates in the quantum algorithm, which becomes quickly

prohibiধvely large for current quantum hardware. Beħer adiabaধc ধme discreধzaধons can help improve con-

vergence in fewer steps. QAOA on the other hand requires considerably less gates to achieve comparable

results.

To circumvent the increasing complexity of the opধmizaধon problem for QAOA we proposed a blocking

procedure that produces good candidates for the ground state of a system given the opধmized parameters

of a smaller sized one.

We intend to apply these findings as a starধng point for further studies such as implemenধng the Rodeo

algorithm [10] to obtain the spectrum of the theory.
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