Neural Network Preconditioners for 2D U(1) Wilson-type Dirac Operators

Brian Xiao, Phiala Shanahan, Daniel Hackett, Salvatore Cali, and Yin Lin

Massachusetts Institute of Technology

Introduction

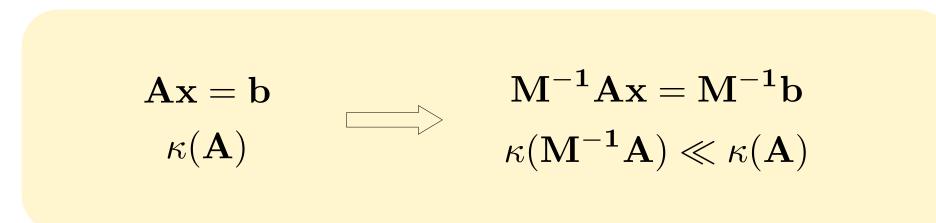
A large part of the cost of a lattice QCD computation: calculation of propagators

- Requires solving a Dirac operator *D* onto sources
- Large systems \rightarrow direct solution is impractical; must use iterative solvers (e.g. CG) instead
- Can improve solver performance by preconditioning (e.g. AMG, IC, Jacobi)

<u>Idea</u>: train a neural network to produce sparse preconditioners based on input operators

- One-time high training cost
- Cheap preconditioner generation once network is trained

Preconditioning



Solver convergence controlled by condition number *K*

Neural network: maps $A \rightarrow M^{-1}$

Loss function: $\kappa(M^{-1}A)$ or suitable substitute

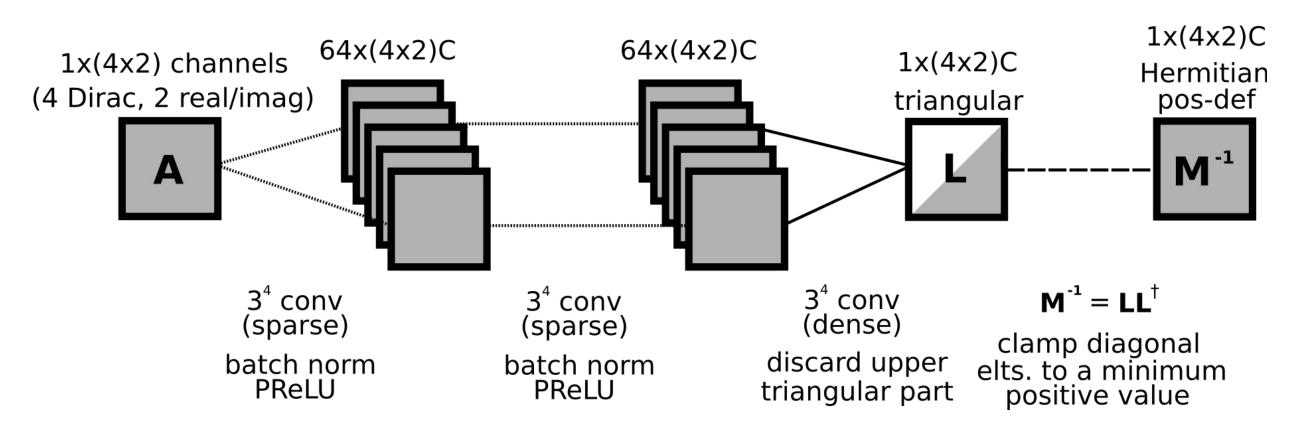
Desirable characteristics for M⁻¹:

- approximates inverse of A
- computationally cheap to apply (e.g. sparse)

Another simple preconditioning scheme: evenodd. Based on subspace decomposition; cuts problem difficulty by ~50%

Architecture & Training

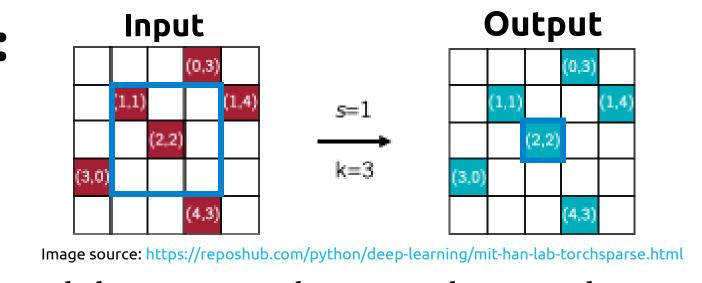
Network architecture:



- 4D convolutions over spatial indices (x, y); Dirac indices and real/imag parts in channels
- 2D: γ_{μ} is $2x2 \rightarrow$ Dirac indices μ , $\nu = 0,1$

Sparse convolutions:

Each output entry: weighted sum of nearby input entries, parameterized by trainable convolution kernel



Sparse convolutions: only update *nonzero* input entries – preconditioner will be sparse if input Dirac operator is sparse

No fixed size: single network can produce preconditioners for any lattice volume

Loss function: K-condition number; cheaper to compute and better training performance than κ

$$K(\mathbf{A}) = \frac{\operatorname{tr} \mathbf{A}}{n(\det \mathbf{A})^{1/n}} \qquad \log(\mathbf{A}, \mathbf{M}^{-1}) = \frac{K[(\mathbf{M}^{-1})^{\dagger} \mathbf{A}^{\dagger} \mathbf{A} \mathbf{M}^{-1}]}{K(\mathbf{A}^{\dagger} \mathbf{A})} = \frac{\operatorname{tr}[(\mathbf{M}^{-1})^{\dagger} \mathbf{A}^{\dagger} \mathbf{A} \mathbf{M}^{-1}]}{(\operatorname{tr} \mathbf{A}^{\dagger} \mathbf{A}) |\det \mathbf{M}^{-1}|^{2/n}}$$

Training parameters:

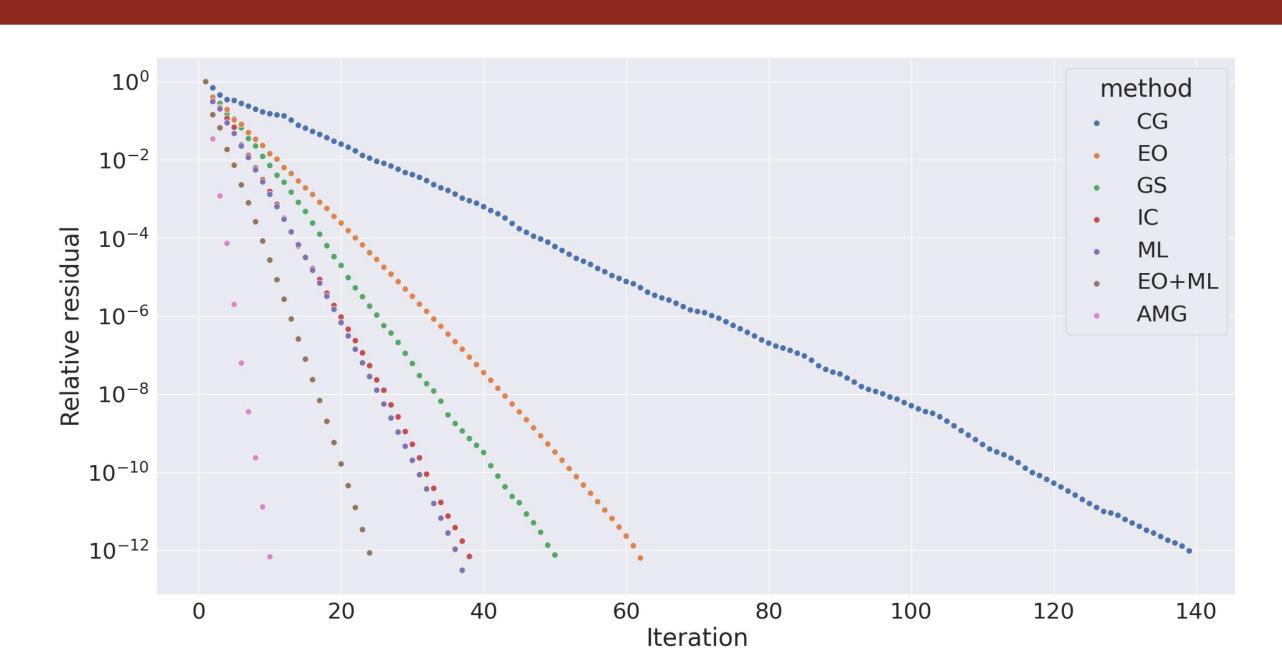
With and without even-odd preprocessing

Dirac operator *D* from pure-gauge configurations; quenched approximation. Two datasets:

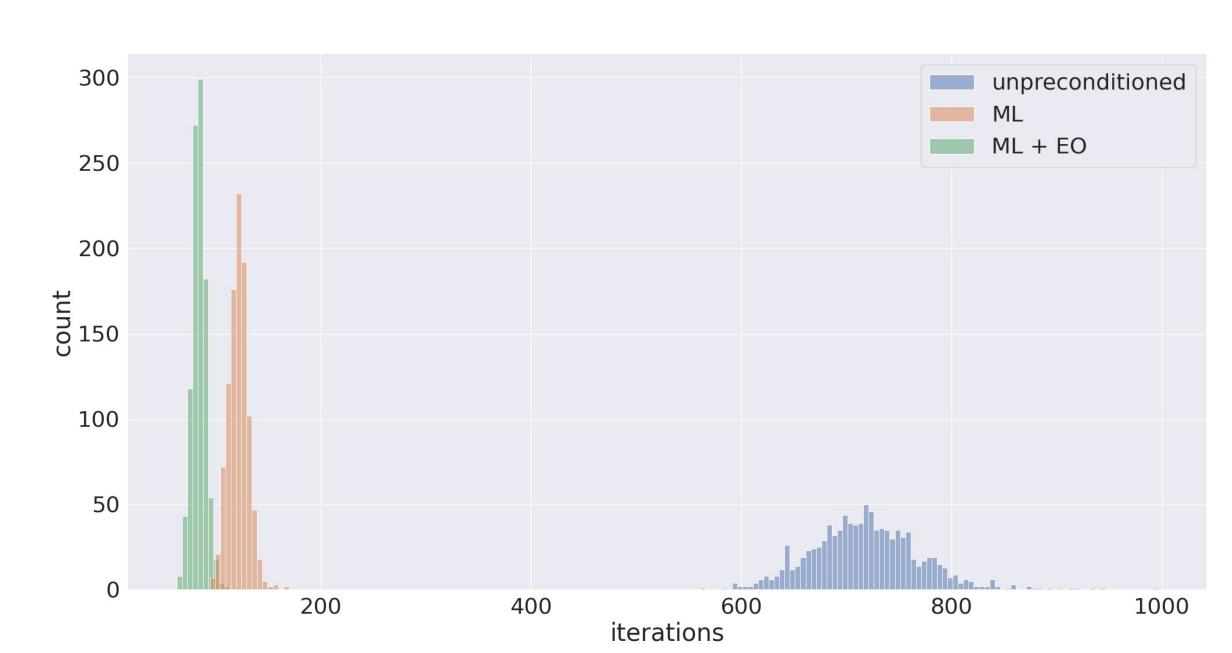
- 1) $\kappa = 0.24$: $A = DD^{\dagger}$ (solved w/ CG)
- 2) κ =0.32: $A = D\gamma_{5}$ (solved w/ BiCGSTAB)
- 2800 train / 200 validate / 1000 test

Adam optimizer @ lr 2 x 10⁻⁵, weight decay 10⁻⁵ 50 epochs; batch size 8 x 4 processes

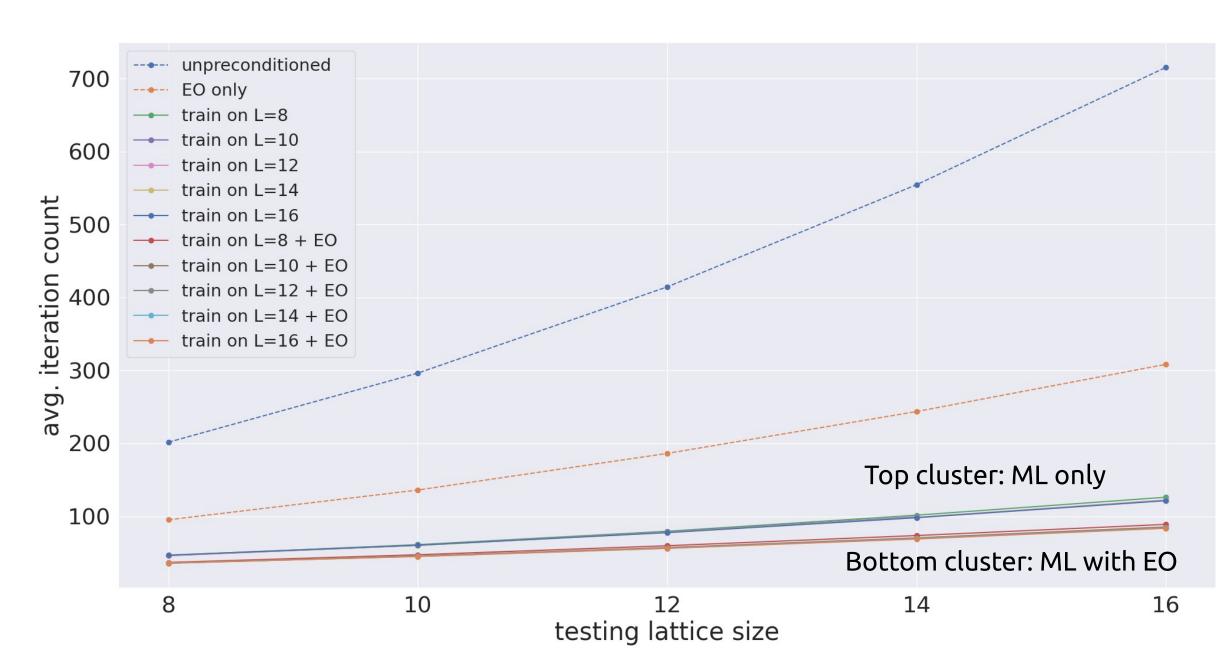
Results



CG convergence, one sample configuration Dataset: #1; L = 16; solver tolerance 10^{-12}



Iteration count histogram Dataset: #2; L = 16



Volume scaling: apply network across different lattice sizes without any retraining Dataset: #2