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Architecture & Training
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ldea: train a neural network to produce sparse
preconditioners based on input operators

* One-time high training cost
* Cheap preconditioner generation once network
is trained

Preconditioning

Ax=Db M 1Ax=M"1'b
k(A) KM 1A) < k(A)

Solver convergence controlled by condition
number K

Neural network: maps A - M-
Loss function: k(M A) or suitable substitute
Desirable characteristics for M™:

* approximates inverse of A

* computationally cheap to apply (e.g. sparse)

Another simple preconditioning scheme: even-
odd. Based on subspace decomposition; cuts
problem difficulty by ~50%

* 4D convolutions over spatial indices (X, y); Dirac
indices and real/imag parts in channels

» 2D: y, is 2x2 - Dirac indices u, v=0,1

Sparse convolutions:

Each output entry:
weighted sum of
nearby input entries,
parameterized by trainable convolution kernel

Image source: https://reposhub.com/python/deep-learning/mit-han-lab-torchsparse.html

Sparse convolutions: only update nonzero input
entries — preconditioner will be sparse if input
Dirac operator is sparse

No fixed size: single network can produce
preconditioners for any lattice volume

Loss function: K-condition number; cheaper to
compute and better training performance than «
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Training parameters:
With and without even-odd preprocessing

Dirac operator D from pure-gauge configurations;
quenched approximation. Two datasets:

1) k=0.24: A = DD’ (solved w/ CG)
2) k=0.32: A = Dy, (solved w/ BiCGSTAB)

» 2800 train / 200 validate / 1000 test
Adam optimizer @ lr 2 x 10, weight decay 10~
50 epochs; batch size 8 x 4 processes

lteration

CG convergence, one sample configuration
Dataset: #1; L = 16; solver tolerance 102
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Dataset: #2;: L=16

—e— train on L=8

—e— train on L=10
train on L=12
train on L=14

train on L=16

train on L=8 + EO
train on L=10 + EO
train on L=12 + EO
train on L=14 + EO
train on L=16 + EO

Top cluster: ML only
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testing lattice size

Volume scaling: apply network across different
lattice sizes without any retraining
Dataset: #2
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