Neural Network Preconditioners for 2D U(1) Wilson-type Dirac Operators

Brian Xiao, Phiala Shanahan, Daniel Hackett, Salvatore Cali, and Yin Lin

Massachusetts Institute of Technology

introductior T Resules

Architecture & Training

100 * m
A large part of the cost of a lattice QCD Network architecture: - Hre | egd
computation: calculation of propagators Ix(ax2) channels 64X(4x2)C 64x(4x2)C a1 Lx(4x2)C TS -
. . . (4 Dirac, 2 real/imag) triangular pos-def B 1074 e e et e . ML
* Requires solving a Dirac operator Donto sources [—1]_— 2 I . EO+ML
» Large systems — direct solution is impractical; E "" |E| I =
must use iterative solvers (e.g. CG) instead .
* Can improve solver performance by 3 cony 3 cony 3 cony clanl\:l;;al-gl-;nal T
preconditioning (e.g. AMG, IC, Jacobi) PERE™ PERA™ ol ea ol fea minimum . R R R R R
0 20 40 60 80 100 120 140

ldea: train a neural network to produce sparse
preconditioners based on input operators

* One-time high training cost
* Cheap preconditioner generation once network
is trained

Preconditioning

Ax=Db M 1Ax=M"1'b
k(A) KM 1A) < k(A)

Solver convergence controlled by condition
number K

Neural network: maps A - M-
Loss function: k(M A) or suitable substitute
Desirable characteristics for M™:

* approximates inverse of A

* computationally cheap to apply (e.g. sparse)

Another simple preconditioning scheme: even-
odd. Based on subspace decomposition; cuts
problem difficulty by ~50%

* 4D convolutions over spatial indices (X, y); Dirac
indices and real/imag parts in channels

» 2D: y, is 2x2 - Dirac indices u, v=0,1

Sparse convolutions:

Each output entry:
weighted sum of
nearby input entries,
parameterized by trainable convolution kernel

Image source: https://reposhub.com/python/deep-learning/mit-han-lab-torchsparse.html

Sparse convolutions: only update nonzero input
entries — preconditioner will be sparse if input
Dirac operator is sparse

No fixed size: single network can produce
preconditioners for any lattice volume

Loss function: K-condition number; cheaper to
compute and better training performance than «

KM HTATAM™Y tr[(M~1)TATAM]

trA loss(A,M™!) = =

K(A

) = et A)i/n K(ATA) (tr ATA)|det M 1[2/"

Training parameters:
With and without even-odd preprocessing

Dirac operator D from pure-gauge configurations;
quenched approximation. Two datasets:

1) k=0.24: A = DD’ (solved w/ CG)
2) k=0.32: A = Dy, (solved w/ BiCGSTAB)

» 2800 train / 200 validate / 1000 test
Adam optimizer @ lr 2 x 10, weight decay 10~
50 epochs; batch size 8 x 4 processes

lteration

CG convergence, one sample configuration
Dataset: #1; L = 16; solver tolerance 102

300 unpreconditioned

ML
ML + EO

250

200

count

100

50

700

I
o
o

avg. iteration count
W
o
o

200

100

200 400 600 800 1000
iterations

lteration count histogram
Dataset: #2;: L=16

—e— train on L=8

—e— train on L=10
train on L=12
train on L=14

train on L=16

train on L=8 + EO
train on L=10 + EO
train on L=12 + EO
train on L=14 + EO
train on L=16 + EO

Top cluster: ML only
/

_’Kf/ﬂ—/

- I _B_gttofn cluster: ML with EO

8 10 12 14 16
testing lattice size

Volume scaling: apply network across different
lattice sizes without any retraining
Dataset: #2

https://reposhub.com/python/deep-learning/mit-han-lab-torchsparse.html

	Slide 1

