

Neural Network Preconditioners for 2D U(1) Wilson-type Dirac Operators
Brian Xiao, Phiala Shanahan, Daniel Hackett, Salvatore Cali, and Yin Lin

Massachusetts Institute of Technology

A large part of the cost of a lattice QCD
computation: calculation of propagators
● Requires solving a Dirac operator D onto sources
● Large systems direct solution is impractical; →
must use iterative solvers (e.g. CG) instead

● Can improve solver performance by
preconditioning (e.g. AMG, IC, Jacobi)

Idea: train a neural network to produce sparse
preconditioners based on input operators
● One-time high training cost
● Cheap preconditioner generation once network
is trained

Introduction

Preconditioning

Solver convergence controlled by condition
number κ

Neural network: maps A → M -1

Loss function: κ(M -1A) or suitable substitute

Desirable characteristics for M -1:
● approximates inverse of A
● computationally cheap to apply (e.g. sparse)

Another simple preconditioning scheme: even-
odd. Based on subspace decomposition; cuts
problem difficulty by ~50%

Network architecture:

● 4D convolutions over spatial indices (x, y); Dirac
indices and real/imag parts in channels

● 2D: γ
μ
 is 2x2 Dirac indices → μ, ν = 0,1

Sparse convolutions:

Each output entry:
weighted sum of
nearby input entries,
parameterized by trainable convolution kernel

Sparse convolutions: only update nonzero input
entries – preconditioner will be sparse if input
Dirac operator is sparse

No fixed size: single network can produce
preconditioners for any lattice volume

Loss function: K-condition number; cheaper to
compute and better training performance than κ

Training parameters:

With and without even-odd preprocessing

Dirac operator D from pure-gauge configurations;
quenched approximation. Two datasets:

1) κ=0.24: A = DD† (solved w/ CG)

2) κ=0.32: A = Dγ
5
 (solved w/ BiCGSTAB)

● 2800 train / 200 validate / 1000 test

Adam optimizer @ lr 2 x 10-5, weight decay 10-5

50 epochs; batch size 8 x 4 processes

Architecture & Training

CG convergence, one sample configuration
Dataset: #1; L = 16; solver tolerance 10-12

Iteration count histogram
Dataset: #2; L = 16

Volume scaling: apply network across different
lattice sizes without any retraining

Dataset: #2

Results

Input Output

Image source: https://reposhub.com/python/deep-learning/mit-han-lab-torchsparse.html

Top cluster: ML only

Bottom cluster: ML with EO

https://reposhub.com/python/deep-learning/mit-han-lab-torchsparse.html

	Slide 1

