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Normalizing Flows

For a random variable z with a given distribution z ∼ r(z), and an invertible function x = f (z)
with z = f−1(x), we can use the change of variables formula to write

p(x) = r(z)
∣∣∣∣det ∂z

∂x

∣∣∣∣ = r(f−1(x))

∣∣∣∣∣det ∂f−1

∂x

∣∣∣∣∣ (1)

Where r(z) is the (simple) prior density, and our goal is to generate independent samples from the

(difficult) target distribution p(x). This can be done using normalizing flows to construct a model

density q(x) that approximates the target distribution, i.e. q(·) ≈ p(·) for a suitably-chosen flow f .

Figure 1. Using a Flow to generate data x′. Image adapted from [5]

We can construct a normalizing flow by composing multiple invertible functions fi so that x ≡
[f1◦f2◦ · · ·◦fK ](z). In practice, the functions fi are usually implemented as coupling layers, which

update an “active” subset of the variables, conditioned on the complimentary “frozen” variables.

Affine Coupling Layers

A particularly useful template function for constructing our normalizing flow is the affine coupling

layer which is defined as

f (x1, x2) =
(

es(x2)x1 + t(x2), x2
)

, with log J(x) =
∑

k

[s(x2)]k (2)

f−1(x′1, x′2) =
(

(x′1 − t(x′2))e
−s(x′2), x′2

)
with log J(x′) =

∑
k

−[s(x′2)]k (3)

where s(x2) and t(x2) are of the same dimensionality as x1 and the functions act elementwise on

the inputs.

In order to effectively draw samples from the correct target distribution p(·), our goal is to minimize

the error introduced by approximating q(·) ≈ p(·). To do so, we use the (reverse) Kullback-Leibler

(KL) divergence from Eq. 4, which is minimized when p = q.

DKL(q||p) ≡
∫

dy q(y)[log q(y)− log p(y)] ≈ 1
N

N∑
i=1

[log q(yi)− log p(yi)] where yi ∼ q. (4)

Hamiltonian Monte Carlo (HMC)

1. Introduce v ∼ N (0, In) ∈ Rn and write the joint distribution:

p(x, v) = p(x)p(v) ∝ e−S(x)e−
1
2vT v = e−H(x,v). (5)

2. Evolve the joint system ξ ≡ (ẋ, v̇) using Hamilton’s equations along H = const.
3. Accept or reject the proposal configuration using the Metropolis-Hastings test.

Leapfrog Integrator:

1. ṽ ← v − ε
2∂xS(x)

2. x′← x + εṽ

3. v′← ṽ − ε
2∂xS(x′)

Metropolis-Hastings:

xi+1 =

x′ w/ prob. A(ξ′|ξ) ≡ min
{

1,
p(ξ′)
p(ξ)

∣∣∣ ∂ξ′

∂ξT

∣∣∣}
x w/ prob. 1− A(ξ′|ξ).

Trivializing Map

Figure 2. Normalizing Flow with inner HMC block.

Our goal is to evaluate expectation values of the form

〈O〉 = 1
Z

∫
dxO(x)e−S(x). (6)

. Using a normalizing flow, we can perform a change of variables x = f (z) so Eq. 6 becomes

〈O〉 = 1
Z

∫
dz | det[J(z)]| O(f (z)) e−S(f (z)), where J(z) = ∂f (z)

∂z
(7)

= 1
Z

∫
dzO(f (z))e−S(f (z))+log | det[J(z)]|. (8)

The Jacobian matrix J(z) must satisfy

1. Injective (1-to-1) between domains of integration

2. Continuously differentiable (or, differentiable with continuous inverse).

The function f is a trivializing map when S(f (z)) − log | det J(z)| = const., and our expectation

value simplifies to

〈O〉 = 1
Z∗

∫
dzO(f (z)) where

1
Z∗

= 1
Z

exp(−const). (9)

HMCwith Normalizing Flows

We can implement the trivializing map defined above using a normalizing flow model. For conju-

gate momenta π, we can write the Hamiltonian

H(z, π) = 1
2
π2 + S(f (z))− log | det J(f (z))| (10)

and the associated equations of motion as

ż = ∂H

∂π
= π (11)

π̇ = −J(z)S′(f (z)) + tr
[
J−1 d

dz
J

]
(12)

If we introduce a change of variables π = J(z)ρ = J(f−1(x))ρ and z = f−1(x), the determinant

of the Jacobian matrix reduces to 1 and we obtain the modified Hamiltonian

H̃(x, ρ) = 1
2
ρ†ρ + S(x)− log | det J |. (13)

As shown in Fig. 2, we can use f−1 : z → x to performHMC updates on the transformed variables

x, and f : x→ z to recover the physical target distribution.
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Figure 3. Plaquette

LetUµ(n) = eixµ(n) ∈ U(1), with xµ(n) ∈ [−π, π] denote the link variables,
where xµ(n) is a link at the site n oriented in the direction µ̂.

We can write our target distribution, p(x), in terms of the Wilson action

S(x) as

p(x) ∝ e−S(x), where S(x) ≡
∑
P

1− cos xP and (14)

xP = xµ(n) + xν(n + µ̂)− xµ(n + ν̂)− xν(n) (15)

as shown in Figure. 3. For a given lattice configuration, we can define

the topological charge Q ∈ Z as

Q = 1
2π

∑
P

arg(xP ), where arg(xP ) ∈ [−π, π]. (16)

We are interested in how this quantity evolves over a finite length Markov Chain, in particular we

can define the tunneling rate, dQ as

dQ =
√

(Qi+1 −Qi)2 (17)

where the difference is between subsequent states in the chain.

Results

(a) 8× 8 lattice, HMC at β = 7
(b) 16× 16 lattice, HMC at β = 7

Figure 4. Tunneling rate vs MC trajectory for HMC, demonstrating topological freezing resulting in large integrated

autocorrelation times.

(a) 8× 8 lattice, HMC + Normalizing Flow at β = 7 (b) 16× 16 lattice, HMC + Normalizing Flow at β = 7

Figure 5. Tunneling rate vs MC trajectory for HMC with trained Normalizing Flow, demonstrating an improved

tunneling rate compared to HMC.
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