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DDαAMG - Preconditioners
I To circumvent the issue of critical slowing down and

effectively invert the large sparse matrix, DDαAMG uses two
preconditioners: a smoother and coarse grid correction

I For a smoother, we use red-black Schwarz Alternating
Procedure (SAP) (Luscher 2007a).

I For coarse grid correction, we use Algebraic MultiGrid (AMG)
(Wesseling 1995).

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs556



DDαAMG - Performance

I MG correction accelerates convergence

I MG solvers outperforms traditional Krylov subspace solvers
like the conjugate gradient solver at small quark masses

I DDalphaAMG for twisted mass fermions is two orders of
magnitude faster than CG



DDαAMG - Scaling
I Bottlenneck of Multigrid methods is the scalability
I Ideal scaling breaks down, and performance stagnates for

parallelization above 125 Skylake nodes in case of a 3-level
MG approach

I With the current hardware trends higher core counts per node
the scalability window will even shrink further
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Figure: A scaling plot on the ensemble of Nf = 2 + 1 + 1 twisted mass
clover with a ∼ 0.07fm and V = 803x160 at physical point simulated on
SuperMUC-NG (Intel Xeon (”Skylake”)) at LRZ



Multiple R.H.S. - Objectives
Originally,

I the code was written for a single rhs

I with multiple rhs, each rhs was inverted one by one

I vectorization of loops was done by chopping a single vector
into chunks

I this was done manually using instruction sets for a specific
SIMD extension

However,

I We can perform multiple inversions more efficiently.

I We also want to improve portability of our code letting
compilers perform optimization analysis and vectorization.

I Multiple inversion is perfect for rational approximation

Thus,

I We solve the system of equations with multiple right-hand
sides (rhs) simultaneously (b → b).



Multiple R.H.S. - Objectives

This allows us to invert

I Dirac matrices for twisted-mass fermions with different µ
shifts,

DTM(µi ) = DW + i(µ+ δµi )γ5

for different rhs simultaneously.

I degenerate Dirac matrices for twisted-mass fermions for both
flavors together

DD(µ) = (DcW ⊗ I2) + iµ(γ5 ⊗ τ3)

=

(
DTM(µ) 0

0 DTM(−µ)

)



Multiple R.H.S. - Implementation

I We define a new data structure for a bundle of vectors.

I Vectors in the bundle are ordered in such a way that the index
on vectors runs the fastest.

I All low-level routines are rewrited to respect the new structure.

I We process a bundle of right-hand vectors simultaneously
using SIMD vectorization of loops.

I This reduces data loading time for the matrix.
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Multiple R.H.S. - Implementation details

I Instead of manually vectorizing the loops using instruction
sets, we auto-vectorize the loops using pragmas:
Pragma(”unroll”), Pragma(”vector aligned”), and
Pragma(”ivdep”).

I These pragmas are applied to a for-loop of a pre-determined
iteration length: for( jj=0; jj<num_loop; jj++).

I The number of rhs are assumed to be multiple of num_loop.

I This shifts vectorization from 128 bit to 256 bit

Num. R.H.S. 1 rhs 4 rhs 8 rhs
Instruction Mix SP Flops DP Flops SP Flops DP Flops SP Flops DP Flops

128-bit 95.26% 86.59% 23.41% 4.99% 24.92% 3.60%
256-bit 2.58% 1.26% 60.68% 78.13% 74.02% 94.76%
Total 97.26% 84.03% 98.81%

Table: Vectorization Reports



Scaling

Conclusion:

I Breakdown of strong scaling can be pushed to higher
parallelization, mutiple rhs shows scalability up to 512 nodes
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Block Solvers

Fast Accurate Block Linear krylOv Solver (Fabulous):

I Fabulous is an external library implementing block Krylov
solvers such as GMRES and GCR (Robbé and Sadkane 2006;
Morgan 2005; Agullo, Giraud, and Jing 2014)

I It combines BGMRES with detection of inexact breakdown,
deflated restarting, and incremental QR factorization.

I It provides several different orthogonalization schemes.

Its usage in DDαAMG:

I We linked the DDαAMG code to Fabulous and make it
available non-block GMRES or one of the solvers provided via
fabulous library at each level

I Our implementation of multiple r.h.s. stultifies inexact
breakdown.



Setup

Fixed parameters:

I Three-level DDαAMG

I The target residual at the top level: 1× 10−10

I Top level solver: FGMRES

Tuning parameters:

I Solvers at the middle and bottom levels (BGMRES, BGCR,
BGMRES with deflated restarting (DR), BGMRES with
incremental QR factorization (QR), BGMRES with DR and
QR (DRQR)

I Residuals at the middle and bottom levels

I Orthogonalization scheme (Classical Gram-Schmidt (CGS),
Modified Gram-Schmidt (MGS), Iterative CGS (ICGS),
Iterative MGS, each possibly with blocking)

I Size of deflation space at the bottom



Environment

The systems used for tuning:

I Lattice: 483 × 98 at physical point

I System: Cyclone (Intel Xeon Gold 6248) at The Cyprus
Institute



Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS
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Tuning Residuals

Middle Solver: FGMRES; Bottom Solver: FGMRES
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Tuning Residuals

Middle Solver: BGCR; Bottom Solver: FGMRES
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Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Residuals

Middle Solver: BGCR; Bottom Solver: BGCR
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Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Residuals

Middle Solver: FGMRES; Bottom Solver: BGCR
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Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Residuals

Middle Solver: BGCR; Bottom Solver: FGMRES
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Figure: Comparison of average iteration count between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Residuals

Middle Solver: BGCR; Bottom Solver: BGCR
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Figure: Comparison of average iteration count between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Deflation
Middle Solver: BGCR; Bottom Solver: BGCR or BGCRO with
deflation
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Figure: Comparison of average iteration count at the bottom level with
the middle residual 6.31× 10−2 and bottom residual 0.1 between BGCR
with and without deflation



Tuning Deflation

δ : 7→ 4, 1 in DTM,bottom = Dc + iδµγ5
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Figure: 4 rhs
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Figure: 12 rhs

Figure: Comparison of total iteration count at the bottom with non-block
FGMRES as the middle solver at middle residual, 0.1, bottom residual,
0.1, on the lattice of size 323 × 64.



Tuning Results

I Inversion by fabulous solvers takes more time to converge

I This is due to overhead of reordering of vectors and
MPI˙Allreduce calls in the inner product during inversion by
fabulous solvers

I As the solver converges quickly at the middle level, block
solvers are not effective when used at this level to reduce
iteration count

I Block solvers reduce iteration count when used at the bottom

I Deflation in combination with block solvers is helpful in some
cases



Outlook

I Scalability is extended by around a factor 5.

I Usage of fabulous in AMG did not reduce overall convergence
time due to its overhead

I When used at the bottom, a fabulous solver was effective in
reducing iteration count when the bottom residual is smaller
than 0.1

I Deflation needs more investigation to find a parameter region
where it is effective
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