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DDaAMG - Preconditioners

» To circumvent the issue of critical slowing down and
effectively invert the large sparse matrix, DDa@AMG uses two
preconditioners: a smoother and coarse grid correction

» For a smoother, we use red-black Schwarz Alternating
Procedure (SAP) (Luscher 2007a).

» For coarse grid correction, we use Algebraic MultiGrid (AMG)
(Wesseling 1995).
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DDaAMG - Performance

» MG correction accelerates convergence

» MG solvers outperforms traditional Krylov subspace solvers
like the conjugate gradient solver at small quark masses

» DDalphaAMG for twisted mass fermions is two orders of
magnitude faster than CG
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DDaAMG - Scaling

» Bottlenneck of Multigrid methods is the scalability

» lIdeal scaling breaks down, and performance stagnates for
parallelization above 125 Skylake nodes in case of a 3-level
MG approach

» With the current hardware trends higher core counts per node
the scalability window will even shrink further
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Figure: A scaling plot on the ensemble of Ny =2 + 1+ 1 twisted mass
clover with a ~ 0.07fm and V = 803x160 at physical point simulated on
SuperMUC-NG (Intel Xeon ("Skylake")) at LRZ



Multiple R.H.S. - Objectives
Originally,

> the code was written for a single rhs
» with multiple rhs, each rhs was inverted one by one

> vectorization of loops was done by chopping a single vector
into chunks

» this was done manually using instruction sets for a specific
SIMD extension

However,
> We can perform multiple inversions more efficiently.

» We also want to improve portability of our code letting
compilers perform optimization analysis and vectorization.

» Multiple inversion is perfect for rational approximation
Thus,

> We solve the system of equations with multiple right-hand
sides (rhs) simultaneously (b — b).



Multiple R.H.S. - Objectives

This allows us to invert

» Dirac matrices for twisted-mass fermions with different p
shifts,

Drni(pi) = Dw + (i + 0pi)vs
for different rhs simultaneously.

» degenerate Dirac matrices for twisted-mass fermions for both
flavors together

Dp(p) = (Dew ® k) 4 ip(ys ® 73)
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Multiple R.H.S. - Implementation

» We define a new data structure for a bundle of vectors.

» Vectors in the bundle are ordered in such a way that the index
on vectors runs the fastest.

» All low-level routines are rewrited to respect the new structure.

» We process a bundle of right-hand vectors simultaneously
using SIMD vectorization of loops.

» This reduces data loading time for the matrix.
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Multiple R.H.S. - Implementation details

» Instead of manually vectorizing the loops using instruction
sets, we auto-vectorize the loops using pragmas:
_Pragma("unroll”), Pragma(’vector aligned”), and
_Pragma(”ivdep”).

> These pragmas are applied to a for-loop of a pre-determined
iteration length: for( jj=0; jj<num_loop; jj++).

» The number of rhs are assumed to be multiple of num_loop.

» This shifts vectorization from 128 bit to 256 bit

Num. R.H.S. 1 rhs 4 rhs 8 rhs
Instruction Mix | SP Flops | DP Flops | SP Flops | DP Flops | SP Flops | DP Flops
128-bit 95.26% 86.59% 23.41% 4.99% 24.92% 3.60%
256-bit 2.58% 1.26% 60.68% 78.13% 74.02% 94.76%
Total 97.26% 84.03% 98.81%

Table: Vectorization Reports



Scaling

Conclusion:

» Breakdown of strong scaling can be pushed to higher
parallelization, mutiple rhs shows scalability up to 512 nodes
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Block Solvers

Fast Accurate Block Linear krylOv Solver (Fabulous):

» Fabulous is an external library implementing block Krylov
solvers such as GMRES and GCR (Robbé and Sadkane 2006;
Morgan 2005; Agullo, Giraud, and Jing 2014)

» [t combines BGMRES with detection of inexact breakdown,
deflated restarting, and incremental QR factorization.

> It provides several different orthogonalization schemes.

Its usage in DDaAMG:

> We linked the DDaAMG code to Fabulous and make it
available non-block GMRES or one of the solvers provided via
fabulous library at each level

» Our implementation of multiple r.h.s. stultifies inexact
breakdown.



Setup

Fixed parameters:
» Three-level DDaAMG
» The target residual at the top level: 1 x 10710
» Top level solver: FGMRES

Tuning parameters:

» Solvers at the middle and bottom levels (BGMRES, BGCR,
BGMRES with deflated restarting (DR), BGMRES with
incremental QR factorization (QR), BGMRES with DR and
QR (DRQR)

» Residuals at the middle and bottom levels

» Orthogonalization scheme (Classical Gram-Schmidt (CGS),
Modified Gram-Schmidt (MGS), Iterative CGS (ICGS),
Iterative MGS, each possibly with blocking)

» Size of deflation space at the bottom



Environment

The systems used for tuning:
> Lattice: 483 x 98 at physical point

» System: Cyclone (Intel Xeon Gold 6248) at The Cyprus
Institute



Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS
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Tuning Residuals

Middle Solver: FGMRES; Bottom Solver: FGMRES

rm=1.00e-01
rm=7.94e-02
m=6.31e-02
I'm=>5.01e-02
rm = 3.98e-02
rm=3.16e-02
m=2.51e-02
Im=2.00e-02
rm=1.58e-02
rm=1.26e-02
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Tuning Residuals

Middle Solver: BGCR; Bottom Solver: FGMRES

—— I;m=2.00e-02
—-= Ipm=2.00e-02
m=2.51e-02
—= Iyp=2.51e-02
rm=3.16e-02
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Residual at the bottom

Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Residuals

Middle Solver: BGCR; Bottom Solver;: BGCR
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Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Residuals

Middle Solver: FGMRES; Bottom Solver: BGCR
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Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Residuals

Middle Solver: BGCR; Bottom Solver;: FGMRES
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Figure: Comparison of average iteration count between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Residuals

Middle Solver: BGCR; Bottom Solver;: BGCR

Avg Iter Count at the middle level
Avg Iter Count at the bottom
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Figure: Comparison of average iteration count between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)



Tuning Deflation
Middle Solver: BGCR; Bottom Solver: BGCR or BGCRO with
deflation
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Figure: Comparison of average iteration count at the bottom level with
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with and without deflation



Tuning Deflation
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Tuning Results

» Inversion by fabulous solvers takes more time to converge

» This is due to overhead of reordering of vectors and
MPI Allreduce calls in the inner product during inversion by
fabulous solvers

P As the solver converges quickly at the middle level, block
solvers are not effective when used at this level to reduce
iteration count

» Block solvers reduce iteration count when used at the bottom

» Deflation in combination with block solvers is helpful in some
cases



Outlook

» Scalability is extended by around a factor 5.

» Usage of fabulous in AMG did not reduce overall convergence
time due to its overhead

» When used at the bottom, a fabulous solver was effective in
reducing iteration count when the bottom residual is smaller
than 0.1

» Deflation needs more investigation to find a parameter region
where it is effective



Thank you!
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