Implementation of Simultaneous Inversion of a Multi-shifted Dirac Matrix for Twisted-Mass Fermions within $DD\alpha AMG$

Shuhei Yamamoto

Simone Bacchio, Jacob Finkenrath

The Cyprus Institute

July 30, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

$\mathsf{DD}\alpha\mathsf{AMG}$

Basics Performance

Mutiple R.H.S.

Motivation Implementation details Scaling results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Block Solvers

Basics Tuning plots Summary

Outlook

$DD\alpha AMG$ - Preconditioners

- To circumvent the issue of critical slowing down and effectively invert the large sparse matrix, DDαAMG uses two preconditioners: a smoother and coarse grid correction
- For a smoother, we use red-black Schwarz Alternating Procedure (SAP) (Luscher 2007a).
- For coarse grid correction, we use Algebraic MultiGrid (AMG) (Wesseling 1995).

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs556

$DD\alpha AMG$ - Performance

- MG correction accelerates convergence
- MG solvers outperforms traditional Krylov subspace solvers like the conjugate gradient solver at small quark masses
- DDalphaAMG for twisted mass fermions is two orders of magnitude faster than CG

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$\mathsf{DD}\alpha\mathsf{AMG}$ - Scaling

- Bottlenneck of Multigrid methods is the scalability
- Ideal scaling breaks down, and performance stagnates for parallelization above 125 Skylake nodes in case of a 3-level MG approach
- With the current hardware trends higher core counts per node the scalability window will even shrink further

Figure: A scaling plot on the ensemble of $N_f = 2 + 1 + 1$ twisted mass clover with $a \sim 0.07$ fm and $V = 80^3 \times 160$ at physical point simulated on SuperMUC-NG (Intel Xeon ("Skylake")) at LRZ

Multiple R.H.S. - Objectives

Originally,

- the code was written for a single rhs
- with multiple rhs, each rhs was inverted one by one
- vectorization of loops was done by chopping a single vector into chunks
- this was done manually using instruction sets for a specific SIMD extension

However,

- We can perform multiple inversions more efficiently.
- We also want to improve portability of our code letting compilers perform optimization analysis and vectorization.
- Multiple inversion is perfect for rational approximation Thus,
 - We solve the system of equations with multiple right-hand sides (rhs) simultaneously (b → b).

Multiple R.H.S. - Objectives

This allows us to invert

 \blacktriangleright Dirac matrices for twisted-mass fermions with different μ shifts,

$$D_{\mathrm{TM}}(\mu_i) = D_W + i(\mu + \delta \mu_i)\gamma_5$$

for different rhs simultaneously.

 degenerate Dirac matrices for twisted-mass fermions for both flavors together

$$egin{aligned} D_D(\mu) &= (D_{
m cW}\otimes I_2) + i\mu(\gamma_5\otimes au_3) \ &= egin{pmatrix} D_{
m TM}(\mu) & 0 \ 0 & D_{
m TM}(-\mu) \end{pmatrix} \end{aligned}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Multiple R.H.S. - Implementation

- We define a new data structure for a bundle of vectors.
- Vectors in the bundle are ordered in such a way that the index on vectors runs the fastest.
- ► All low-level routines are rewrited to respect the new structure.
- We process a bundle of right-hand vectors simultaneously using SIMD vectorization of loops.
- This reduces data loading time for the matrix.

Multiple R.H.S. - Implementation details

- Instead of manually vectorizing the loops using instruction sets, we auto-vectorize the loops using pragmas: _Pragma("unroll"), _Pragma("vector aligned"), and _Pragma("ivdep").
- These pragmas are applied to a for-loop of a pre-determined iteration length: for(jj=0; jj<num_loop; jj++).</p>
- ▶ The number of rhs are assumed to be multiple of num_loop.
- This shifts vectorization from 128 bit to 256 bit

Num. R.H.S.	1 rhs		4 rhs		8 rhs	
Instruction Mix	SP Flops	DP Flops	SP Flops	DP Flops	SP Flops	DP Flops
128-bit	95.26%	86.59%	23.41%	4.99%	24.92%	3.60%
256-bit	2.58%	1.26%	60.68%	78.13%	74.02%	94.76%
Total	97.26%		84.03%		98.81%	

Table: Vectorization Reports

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Scaling

Conclusion:

Breakdown of strong scaling can be pushed to higher parallelization, mutiple rhs shows scalability up to 512 nodes

Block Solvers

Fast Accurate Block Linear krylOv Solver (Fabulous):

- Fabulous is an external library implementing block Krylov solvers such as GMRES and GCR (Robbé and Sadkane 2006; Morgan 2005; Agullo, Giraud, and Jing 2014)
- It combines BGMRES with detection of inexact breakdown, deflated restarting, and incremental QR factorization.
- It provides several different orthogonalization schemes.

Its usage in DD α AMG:

► We linked the DDαAMG code to Fabulous and make it available non-block GMRES or one of the solvers provided via fabulous library at each level

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Our implementation of multiple r.h.s. stultifies inexact breakdown.

Setup

Fixed parameters:

- ► Three-level DD*α*AMG
- The target residual at the top level: 1×10^{-10}
- Top level solver: FGMRES

Tuning parameters:

- Solvers at the middle and bottom levels (BGMRES, BGCR, BGMRES with deflated restarting (DR), BGMRES with incremental QR factorization (QR), BGMRES with DR and QR (DRQR)
- Residuals at the middle and bottom levels
- Orthogonalization scheme (Classical Gram-Schmidt (CGS), Modified Gram-Schmidt (MGS), Iterative CGS (ICGS), Iterative MGS, each possibly with blocking)
- Size of deflation space at the bottom

The systems used for tuning:

- Lattice: $48^3 \times 98$ at physical point
- System: Cyclone (Intel Xeon Gold 6248) at The Cyprus Institute

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Middle Solver: FGMRES; Bottom Solver: FGMRES

(日)

э

Middle Solver: BGCR; Bottom Solver: FGMRES

Figure: Comparison of convergence time between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Middle Solver: BGCR; Bottom Solver: BGCR

Figure: Comparison of convergence time between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Middle Solver: FGMRES; Bottom Solver: BGCR

Figure: Comparison of convergence time between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Middle Solver: BGCR; Bottom Solver: FGMRES

Figure: Comparison of average iteration count between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Middle Solver: BGCR; Bottom Solver: BGCR

Figure: Comparison of average iteration count between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tuning Deflation

Middle Solver: BGCR; Bottom Solver: BGCR or BGCRO with deflation

Figure: Comparison of average iteration count at the bottom level with the middle residual 6.31×10^{-2} and bottom residual 0.1 between BGCR with and without deflation

Tuning Deflation

Figure: 4 rhs

Figure: 12 rhs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Comparison of total iteration count at the bottom with non-block FGMRES as the middle solver at middle residual, 0.1, bottom residual, 0.1, on the lattice of size $32^3 \times 64$.

Tuning Results

- Inversion by fabulous solvers takes more time to converge
- This is due to overhead of reordering of vectors and MPI'Allreduce calls in the inner product during inversion by fabulous solvers
- As the solver converges quickly at the middle level, block solvers are not effective when used at this level to reduce iteration count
- Block solvers reduce iteration count when used at the bottom
- Deflation in combination with block solvers is helpful in some cases

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook

- Scalability is extended by around a factor 5.
- Usage of fabulous in AMG did not reduce overall convergence time due to its overhead
- When used at the bottom, a fabulous solver was effective in reducing iteration count when the bottom residual is smaller than 0.1
- Deflation needs more investigation to find a parameter region where it is effective

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you!

E. Agullo, L. Giraud, and Y.-F. Jing. "Block GMRES Method with Inexact Breakdowns and Deflated Restarting". In: *SIAM Journal on Matrix Analysis and Applications* 35.4 (2014), pp. 1625–1651. DOI: 10.1137/140961912. eprint: https://doi.org/10.1137/140961912. URL: https://doi.org/10.1137/140961912.

- Constantia Alexandrou, Simone Bacchio, and Jacob Finkenrath. "Multigrid approach in shifted linear systems for the non-degenerated twisted mass operator". In: *Comput. Phys. Commun.* 236 (2019), pp. 51–64. DOI: 10.1016/j.cpc.2018.10.013. arXiv: 1805.09584 [hep-lat].

R. Babich et al. "Adaptive multigrid algorithm for the lattice Wilson-Dirac operator". In: *Phys. Rev. Lett.* 105 (2010), p. 201602. DOI: 10.1103/PhysRevLett.105.201602. arXiv: 1005.3043 [hep-lat].

Ronald Babich et al. "The Role of multigrid algorithms for LQCD". In: *PoS* LAT2009 (2009). Ed. by Chuan Liu and Yu Zhu, p. 031. DOI: 10.22323/1.091.0031. arXiv: 0912.2186 [hep-lat].

J. Brannick et al. "Adaptive Multigrid Algorithm for Lattice QCD". In: *Phys. Rev. Lett.* 100 (2008), p. 041601. DOI: 10.1103/PhysRevLett.100.041601. arXiv: 0707,4018, [hep-lat].