Implementation of Simultaneous Inversion of a Multi-shifted Dirac Matrix for Twisted-Mass Fermions within $DD\alpha$ AMG

Shuhei Yamamoto

Simone Bacchio, Jacob Finkenrath

The Cyprus Institute

July 30, 2021

KORKARYKERKER POLO

Outline

$DD\alpha$ [AMG](#page-2-0)

[Basics](#page-2-0) [Performance](#page-3-0)

[Mutiple R.H.S.](#page-5-0)

[Motivation](#page-5-0) [Implementation details](#page-7-0) [Scaling results](#page-9-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Block Solvers](#page-10-0)

[Basics](#page-10-0) [Tuning plots](#page-13-0) [Summary](#page-23-0)

[Outlook](#page-24-0)

 $DD\alpha$ AMG - Preconditioners

- \blacktriangleright To circumvent the issue of critical slowing down and effectively invert the large sparse matrix, $DD\alpha$ AMG uses two preconditioners: a smoother and coarse grid correction
- \blacktriangleright For a smoother, we use red-black Schwarz Alternating Procedure (SAP) (Luscher [2007a\)](#page-24-1).
- \triangleright For coarse grid correction, we use Algebraic MultiGrid (AMG) (Wesseling [1995\)](#page-24-2).

Picture Courtesy: Luke Olson, http://lukeo.cs.ill[ino](#page-1-0)i[s.e](#page-3-0)[d](#page-1-0)[u/](#page-2-0)[cs](#page-3-0)[5](#page-1-0)[56](#page-2-0) QQ

DDαAMG - Performance

- \triangleright MG correction accelerates convergence
- \triangleright MG solvers outperforms traditional Krylov subspace solvers like the conjugate gradient solver at small quark masses
- ▶ DDalphaAMG for twisted mass fermions is two orders of magnitude faster than CG

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

$DD\alpha$ AMG - Scaling

- \triangleright Bottlenneck of Multigrid methods is the scalability
- \blacktriangleright Ideal scaling breaks down, and performance stagnates for parallelization above 125 Skylake nodes in case of a 3-level MG approach
- \triangleright With the current hardware trends higher core counts per node the scalability window will even shrink further

Figure: A scaling plot on the ensemble of $N_f = 2 + 1 + 1$ twisted mass clover with a \sim 0.07fm and $V=80^3 \times 160$ at physical point simulated on SuperMUC-NG (Intel Xeon ("Skylake")) at LRZ

Multiple R.H.S. - Objectives

Originally,

- \triangleright the code was written for a single rhs
- \triangleright with multiple rhs, each rhs was inverted one by one
- \triangleright vectorization of loops was done by chopping a single vector into chunks
- \triangleright this was done manually using instruction sets for a specific SIMD extension

However,

- \triangleright We can perform multiple inversions more efficiently.
- \triangleright We also want to improve portability of our code letting compilers perform optimization analysis and vectorization.
- \blacktriangleright Multiple inversion is perfect for rational approximation Thus,
	- \triangleright We solve the system of equations with multiple right-hand sides (rhs) simultaneously $(b \rightarrow b)$.

Multiple R.H.S. - Objectives

This allows us to invert

 \blacktriangleright Dirac matrices for twisted-mass fermions with different μ shifts,

$$
D_{\text{TM}}(\mu_i) = D_W + i(\mu + \delta \mu_i)\gamma_5
$$

for different rhs simultaneously.

 \triangleright degenerate Dirac matrices for twisted-mass fermions for both flavors together

$$
D_D(\mu) = (D_{\text{cW}} \otimes I_2) + i\mu(\gamma_5 \otimes \tau_3)
$$

=
$$
\begin{pmatrix} D_{\text{TM}}(\mu) & 0 \\ 0 & D_{\text{TM}}(-\mu) \end{pmatrix}
$$

KORK ERKER ADAM ADA

Multiple R.H.S. - Implementation

- \triangleright We define a new data structure for a bundle of vectors.
- \triangleright Vectors in the bundle are ordered in such a way that the index on vectors runs the fastest.
- \blacktriangleright All low-level routines are rewrited to respect the new structure.
- \triangleright We process a bundle of right-hand vectors simultaneously using SIMD vectorization of loops.
- \blacktriangleright This reduces data loading time for the matrix.

v⁰ v¹ v² v⁰ v¹ v² v⁰ v¹ v² v⁰ v¹ v²

KORKARYKERKER POLO

Multiple R.H.S. - Implementation details

- Instead of manually vectorizing the loops using instruction sets, we auto-vectorize the loops using pragmas: Pragma("unroll"), Pragma("vector aligned"), and Pragma("ivdep").
- \blacktriangleright These pragmas are applied to a for-loop of a pre-determined iteration length: for(jj=0; jj<num_loop; jj++).
- \blacktriangleright The number of rhs are assumed to be multiple of num_loop.
- \triangleright This shifts vectorization from 128 bit to 256 bit

Table: Vectorization Reports

KORK EXTERNE PROVIDE

Scaling

Conclusion:

 \triangleright Breakdown of strong scaling can be pushed to higher parallelization, mutiple rhs shows scalability up to 512 nodes

 4 ロ) 4 何) 4 ヨ) 4 コ)

 299

B

Block Solvers

Fast Accurate Block Linear krylOv Solver (Fabulous):

- \blacktriangleright Fabulous is an external library implementing block Krylov solvers such as GMRES and GCR (Robbé and Sadkane [2006;](#page-24-3) Morgan [2005;](#page-24-4) Agullo, Giraud, and Jing [2014\)](#page-24-5)
- \blacktriangleright It combines BGMRES with detection of inexact breakdown, deflated restarting, and incremental QR factorization.
- \blacktriangleright It provides several different orthogonalization schemes.

Its usage in $DD\alpha$ AMG:

 \triangleright We linked the DD α AMG code to Fabulous and make it available non-block GMRES or one of the solvers provided via fabulous library at each level

 \triangleright Our implementation of multiple r.h.s. stultifies inexact breakdown.

Setup

Fixed parameters:

- \blacktriangleright Three-level DD α AMG
- ▶ The target residual at the top level: 1×10^{-10}
- \blacktriangleright Top level solver: FGMRES

Tuning parameters:

- \triangleright Solvers at the middle and bottom levels (BGMRES, BGCR, BGMRES with deflated restarting (DR), BGMRES with incremental QR factorization (QR), BGMRES with DR and QR (DRQR)
- \blacktriangleright Residuals at the middle and bottom levels
- \triangleright Orthogonalization scheme (Classical Gram-Schmidt (CGS), Modified Gram-Schmidt (MGS), Iterative CGS (ICGS), Iterative MGS, each possibly with blocking)
- \triangleright Size of deflation space at the bottom

The systems used for tuning:

- Lattice: $48^3 \times 98$ at physical point
- ▶ System: Cyclone (Intel Xeon Gold 6248) at The Cyprus Institute

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \equiv

Middle Solver: FGMRES; Bottom Solver: FGMRES

 4 ロ) 4 何) 4 ミ) 4 3)

Ğ,

Middle Solver: BGCR; Bottom Solver: FGMRES

Figure: Comparison of convergence time between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ

Middle Solver: BGCR; Bottom Solver: BGCR

Figure: Comparison of convergence time between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Figure: Comparison of convergence time between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

Middle Solver: BGCR; Bottom Solver: FGMRES

Figure: Comparison of average iteration count between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

KORK EXTERNE PROVIDE

Middle Solver: BGCR; Bottom Solver: BGCR

Figure: Comparison of average iteration count between AMG with only non-block solvers (solid line) and AMG with mixed solvers (dashed line)

KORK EXTERNE PROVIDE

Tuning Deflation

Middle Solver: BGCR; Bottom Solver: BGCR or BGCRO with deflation

Figure: Comparison of average iteration count at the bottom level with the middle residual 6.31 \times 10 $^{-2}$ and bottom residual 0.1 between BGCR with and without deflation

◆ロ→ ◆母→ ◆ミ→ ◆ミ→ → ミ

 $2Q$

Tuning Deflation

Figure: 4 rhs

Figure: 12 rhs

KORKARYKERKER POLO

Figure: Comparison of total iteration count at the bottom with non-block FGMRES as the middle solver at middle residual, 0.1, bottom residual, 0.1, on the lattice of size $32^3 \times 64$.

Tuning Results

- \blacktriangleright Inversion by fabulous solvers takes more time to converge
- \blacktriangleright This is due to overhead of reordering of vectors and MPI˙Allreduce calls in the inner product during inversion by fabulous solvers
- \triangleright As the solver converges quickly at the middle level, block solvers are not effective when used at this level to reduce iteration count
- \blacktriangleright Block solvers reduce iteration count when used at the bottom
- \triangleright Deflation in combination with block solvers is helpful in some cases

KORKARYKERKER POLO

Outlook

- \triangleright Scalability is extended by around a factor 5.
- ▶ Usage of fabulous in AMG did not reduce overall convergence time due to its overhead
- \triangleright When used at the bottom, a fabulous solver was effective in reducing iteration count when the bottom residual is smaller than 0.1
- \triangleright Deflation needs more investigation to find a parameter region where it is effective

KORKARYKERKER POLO

Thank you!

E. Agullo, L. Giraud, and Y.-F. Jing. "Block GMRES Method with Inexact Breakdowns and Deflated Restarting". In: SIAM Journal on Matrix Analysis and Applications 35.4 (2014), pp. 1625-1651. DOI: [10.1137/140961912](https://doi.org/10.1137/140961912). eprint: <https://doi.org/10.1137/140961912>. url: <https://doi.org/10.1137/140961912>.

Constantia Alexandrou, Simone Bacchio, and Jacob Finkenrath. "Multigrid approach in shifted linear systems for the non-degenerated twisted mass operator". In: Comput. Phys. Commun. 236 (2019), pp. 51–64. doi: [10.1016/j.cpc.2018.10.013](https://doi.org/10.1016/j.cpc.2018.10.013). arXiv: [1805.09584](https://arxiv.org/abs/1805.09584) [\[hep-lat\]](https://arxiv.org/abs/1805.09584).

R. Babich et al. "Adaptive multigrid algorithm for the lattice Wilson-Dirac operator". In: Phys. Rev. Lett. 105 (2010), p. 201602. doi: [10.1103/PhysRevLett.105.201602](https://doi.org/10.1103/PhysRevLett.105.201602). arXiv: [1005.3043](https://arxiv.org/abs/1005.3043) [\[hep-lat\]](https://arxiv.org/abs/1005.3043).

Ronald Babich et al. "The Role of multigrid algorithms for LQCD". In: PoS LAT2009 (2009). Ed. by Chuan Liu and Yu Zhu, p. 031. DOI: [10.22323/1.091.0031](https://doi.org/10.22323/1.091.0031). arXiv: [0912.2186 \[hep-lat\]](https://arxiv.org/abs/0912.2186).

J. Brannick et al. "Adaptive Multigrid Algorithm for Lattice QCD". In: Phys. Rev. Lett. 100 (2008), p. 041601. DOI: [10.1103/PhysRevLett.100.041601](https://doi.org/10.1103/PhysRevLett.100.041601). arXiv: [0707.4018 \[hep-lat\]](https://arxiv.org/abs/0707.4018)[.](#page-0-1) 2990