Implementation of Simultaneous Inversion of a
Multi-shifted Dirac Matrix for Twisted-Mass
Fermions within DDaAMG

Shuhei Yamamoto

Simone Bacchio, Jacob Finkenrath

The Cyprus Institute

July 30, 2021

' PRACE
'E‘ Tue Cyprus
INsTITUTE

Outline

DDaAMG
Basics
Performance

Mutiple R.H.S.
Motivation
Implementation details
Scaling results

Block Solvers
Basics
Tuning plots
Summary

Outlook

DDaAMG - Preconditioners

» To circumvent the issue of critical slowing down and
effectively invert the large sparse matrix, DDa@AMG uses two
preconditioners: a smoother and coarse grid correction

» For a smoother, we use red-black Schwarz Alternating
Procedure (SAP) (Luscher 2007a).

» For coarse grid correction, we use Algebraic MultiGrid (AMG)
(Wesseling 1995).

e
RO
,&‘n’&ﬂi X\
Vﬁé\;"\&’\g'f\
i ’h‘w;.‘g('

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs556

DDaAMG - Performance

» MG correction accelerates convergence

» MG solvers outperforms traditional Krylov subspace solvers
like the conjugate gradient solver at small quark masses

» DDalphaAMG for twisted mass fermions is two orders of
magnitude faster than CG

m, m. m,
300 —rod . . —~ . —

e CG 4
® DD-cAMG
30 F

=
o
T

.

w

—m—
T m

-

0.001 0.003 0.01 0.03 0.1 0.3
Twisted mass parameter ()

Time for solving Q2+? [core-hrs]

DDaAMG - Scaling

» Bottlenneck of Multigrid methods is the scalability

» lIdeal scaling breaks down, and performance stagnates for
parallelization above 125 Skylake nodes in case of a 3-level
MG approach

» With the current hardware trends higher core counts per node
the scalability window will even shrink further

ssssssssssss

o

rel. speedup for a single rhs
[=
1S)
O

i
5]

0 10" 102 10

SuperMUC-NG - SKL Nodes

3

[
5o

Figure: A scaling plot on the ensemble of Ny =2 + 1+ 1 twisted mass
clover with a ~ 0.07fm and V = 803x160 at physical point simulated on
SuperMUC-NG (Intel Xeon ("Skylake")) at LRZ

Multiple R.H.S. - Objectives
Originally,

> the code was written for a single rhs
» with multiple rhs, each rhs was inverted one by one

> vectorization of loops was done by chopping a single vector
into chunks

» this was done manually using instruction sets for a specific
SIMD extension

However,
> We can perform multiple inversions more efficiently.

» We also want to improve portability of our code letting
compilers perform optimization analysis and vectorization.

» Multiple inversion is perfect for rational approximation
Thus,

> We solve the system of equations with multiple right-hand
sides (rhs) simultaneously (b — b).

Multiple R.H.S. - Objectives

This allows us to invert

» Dirac matrices for twisted-mass fermions with different p
shifts,

Drni(pi) = Dw + (i + 0pi)vs
for different rhs simultaneously.

» degenerate Dirac matrices for twisted-mass fermions for both
flavors together

Dp(p) = (Dew ® k) 4 ip(ys ® 73)

- <DT1\S(M) DTMCE_N)>

Multiple R.H.S. - Implementation

» We define a new data structure for a bundle of vectors.

» Vectors in the bundle are ordered in such a way that the index
on vectors runs the fastest.

» All low-level routines are rewrited to respect the new structure.

» We process a bundle of right-hand vectors simultaneously
using SIMD vectorization of loops.

» This reduces data loading time for the matrix.

Lo [v] v f——lofu|wfw]u]e]w]u]e]

Multiple R.H.S. - Implementation details

» Instead of manually vectorizing the loops using instruction
sets, we auto-vectorize the loops using pragmas:
_Pragma("unroll”), Pragma(’vector aligned”), and
_Pragma(”ivdep”).

> These pragmas are applied to a for-loop of a pre-determined
iteration length: for(jj=0; jj<num_loop; jj++).

» The number of rhs are assumed to be multiple of num_loop.

» This shifts vectorization from 128 bit to 256 bit

Num. R.H.S. 1 rhs 4 rhs 8 rhs
Instruction Mix | SP Flops | DP Flops | SP Flops | DP Flops | SP Flops | DP Flops
128-bit 95.26% 86.59% 23.41% 4.99% 24.92% 3.60%
256-bit 2.58% 1.26% 60.68% 78.13% 74.02% 94.76%
Total 97.26% 84.03% 98.81%

Table: Vectorization Reports

Scaling

Conclusion:

» Breakdown of strong scaling can be pushed to higher
parallelization, mutiple rhs shows scalability up to 512 nodes

nodes

104

speed up of coarse grid

10°
O 1rhs
O 4rhs
) 8rhs
10
o &
10 %o
10°
10° 102
nodes

104

Block Solvers

Fast Accurate Block Linear krylOv Solver (Fabulous):

» Fabulous is an external library implementing block Krylov
solvers such as GMRES and GCR (Robbé and Sadkane 2006;
Morgan 2005; Agullo, Giraud, and Jing 2014)

» [t combines BGMRES with detection of inexact breakdown,
deflated restarting, and incremental QR factorization.

> It provides several different orthogonalization schemes.

Its usage in DDaAMG:

> We linked the DDaAMG code to Fabulous and make it
available non-block GMRES or one of the solvers provided via
fabulous library at each level

» Our implementation of multiple r.h.s. stultifies inexact
breakdown.

Setup

Fixed parameters:
» Three-level DDaAMG
» The target residual at the top level: 1 x 10710
» Top level solver: FGMRES

Tuning parameters:

» Solvers at the middle and bottom levels (BGMRES, BGCR,
BGMRES with deflated restarting (DR), BGMRES with
incremental QR factorization (QR), BGMRES with DR and
QR (DRQR)

» Residuals at the middle and bottom levels

» Orthogonalization scheme (Classical Gram-Schmidt (CGS),
Modified Gram-Schmidt (MGS), Iterative CGS (ICGS),
Iterative MGS, each possibly with blocking)

» Size of deflation space at the bottom

Environment

The systems used for tuning:
> Lattice: 483 x 98 at physical point

» System: Cyclone (Intel Xeon Gold 6248) at The Cyprus
Institute

Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS

280 A

260

Orthoscheme iter

X
v
A
A
A v
AV
v
6 8 10 12 14

VAA)» + 0 o

CGS
Block CGS
MGS
ICGS
Block ICGS
IMGS
Block IMGS

Tuning Residuals

Middle Solver: FGMRES; Bottom Solver: FGMRES

rm=1.00e-01
rm=7.94e-02
m=6.31e-02
I'm=>5.01e-02
rm = 3.98e-02
rm=3.16e-02
m=2.51e-02
Im=2.00e-02
rm=1.58e-02
rm=1.26e-02

130

120

time (s)

110

100

1072 107!
Residual at the bottom

Tuning Residuals

Middle Solver: BGCR; Bottom Solver: FGMRES

—— I;m=2.00e-02
—-= Ipm=2.00e-02
m=2.51e-02
—= Iyp=2.51e-02
rm=3.16e-02
—-= r;m=3.16e-02
m=3.98e-02
—-= Im=3.98e-02

rm=>5.01le-02
—-= rmp=>5.01le-02
— rm=6.31e-02
—-= Im=6.31e-02
—— Im=7.94e-02
—-= I;m=7.94e-02
—— I';m=1.00e-01
—-= r;p=1.00e-01

Residual at the bottom

Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Residuals

Middle Solver: BGCR; Bottom Solver;: BGCR

—— I;m=2.00e-02
—-= Ipm=2.00e-02
— rm=2.51e-02
—= Iyp=2.51e-02
rm=3.16e-02
—-= r;m=3.16e-02
m=3.98e-02
—-= Im=3.98e-02

rm=>5.01le-02
—-= rmp=>5.01le-02
— rm=6.31e-02
—-= Im=6.31e-02
rm=7.94e-02
—-= I;m=7.94e-02
—— I';m=1.00e-01
—-= r;p=1.00e-01

130

120

time (s)

110 A

100 4

1072 107!
Residual at the bottom

Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Residuals

Middle Solver: FGMRES; Bottom Solver: BGCR

1201 Im=2.51e-02

rm=2.51e-02
m=3.16e-02
rm=3.16e-02
rm=3.98e-02
rm=3.98e-02
m=>5.01le-02
—-= rm=5.01e-02
rm=6.31e-02
m=6.31e-02
m=7.94e-02
rm=7.94e-02
rm=1.00e-01
rm=1.00e-01

|

1154

110 A

time (s)

105

100

|

95

1072 107!
Residual at the bottom

Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Residuals

Middle Solver: BGCR; Bottom Solver;: FGMRES

400

N
3

350

5 5 & &

Avg Iter Count at the middle level
s

Avg Iter Count at the bottom

®

o

1072 107! 1072 107!
Residual at the bottom Residual at the bottom

Figure: Comparison of average iteration count between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Residuals

Middle Solver: BGCR; Bottom Solver;: BGCR

Avg Iter Count at the middle level
Avg Iter Count at the bottom

1072 107! 1072 107!
Residual at the bottom Residual at the bottom

Figure: Comparison of average iteration count between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Deflation
Middle Solver: BGCR; Bottom Solver: BGCR or BGCRO with
deflation

164 4

=
o
N

o
[=2]
o

o
w
o]

—— Max Krylov space size=120
—— Avg lter Count w/t deflation

Avg Iter Count at the Bottom
= =
w w
B o

o
w
N

-
wu
o

2.6 x 10t 2.8 x 10 3x 10! 32x10% 3.4x10' 3.6x10!
Deflation Space Size

Figure: Comparison of average iteration count at the bottom level with
the middle residual 6.31 x 10~2 and bottom residual 0.1 between BGCR
with and without deflation

Tuning Deflation

0:7— 45 lin DTM,bottom = Dc + i(SM’YS

5000 T T T T T T
5 5
B o
2 2
H H
5 &
4]
g 2

DDalphaAMG Fabulous Fabulous Fabulous Fabulous Fabulous
GMRES BGMARES BGCRO BGRO-DR BGRODR BGMRES-DR
peshift4 psshit 1 Jeshiftd peshift 1

DDalphaAMG Fabulous Fabulous Fabulous Fabulous Fabulous.
GM BGMRES BGCRO BGRODR BGRO-DR BGMRES-DR

Figure: 4 rhs Figure: 12 rhs

Figure: Comparison of total iteration count at the bottom with non-block
FGMRES as the middle solver at middle residual, 0.1, bottom residual,
0.1, on the lattice of size 323 x 64.

Tuning Results

» Inversion by fabulous solvers takes more time to converge

» This is due to overhead of reordering of vectors and
MPI Allreduce calls in the inner product during inversion by
fabulous solvers

P As the solver converges quickly at the middle level, block
solvers are not effective when used at this level to reduce
iteration count

» Block solvers reduce iteration count when used at the bottom

» Deflation in combination with block solvers is helpful in some
cases

Outlook

» Scalability is extended by around a factor 5.

» Usage of fabulous in AMG did not reduce overall convergence
time due to its overhead

» When used at the bottom, a fabulous solver was effective in
reducing iteration count when the bottom residual is smaller
than 0.1

» Deflation needs more investigation to find a parameter region
where it is effective

Thank you!

E

E. Agullo, L. Giraud, and Y.-F. Jing. “Block GMRES Method with
Inexact Breakdowns and Deflated Restarting”. In: SIAM Journal on
Matrix Analysis and Applications 35.4 (2014), pp. 1625-1651. DOI:
10.1137/140961912. eprint: https://doi.org/10.1137/140961912.
URL: https://doi.org/10.1137/140961912.

Constantia Alexandrou, Simone Bacchio, and Jacob Finkenrath.
“Multigrid approach in shifted linear systems for the non-degenerated
twisted mass operator”. In: Comput. Phys. Commun. 236 (2019),
pp. 51-64. DOI: 10.1016/j.cpc.2018.10.013. arXiv: 1805.09584
[hep-lat].

R. Babich et al. “Adaptive multigrid algorithm for the lattice
Wilson-Dirac operator”. In: Phys. Rev. Lett. 105 (2010), p. 201602.
DOI: 10.1103/PhysRevLlett.105.201602. arXiv: 1005.3043
[hep-lat].

Ronald Babich et al. “The Role of multigrid algorithms for LQCD". In:
PoS LAT2009 (2009). Ed. by Chuan Liu and Yu Zhu, p. 031. por:
10.22323/1.091.0031. arXiv: 0912.2186 [hep-lat].

J. Brannick et al. “Adaptive Multigrid Algorithm for Lattice QCD". In:
Phys. Rev. Lett. 100 (2008), p. 041601. DOI:
10.1103/PhysRevLett.100.041601. arXiv: 0707.4018 [hep-lat].

https://doi.org/10.1137/140961912
https://doi.org/10.1137/140961912
https://doi.org/10.1137/140961912
https://doi.org/10.1016/j.cpc.2018.10.013
https://arxiv.org/abs/1805.09584
https://arxiv.org/abs/1805.09584
https://doi.org/10.1103/PhysRevLett.105.201602
https://arxiv.org/abs/1005.3043
https://arxiv.org/abs/1005.3043
https://doi.org/10.22323/1.091.0031
https://arxiv.org/abs/0912.2186
https://doi.org/10.1103/PhysRevLett.100.041601
https://arxiv.org/abs/0707.4018
https://doi.org/10.1007/s00211-015-0725-6
https://arxiv.org/abs/1410.7170
https://arxiv.org/abs/1410.7170
https://doi.org/10.22323/1.066.0035
https://arxiv.org/abs/0811.4331
https://doi.org/10.22323/1.139.0030
https://arxiv.org/abs/1205.2933
https://arxiv.org/abs/1307.6101
https://doi.org/10.1088/1126-6708/2007/12/011
https://arxiv.org/abs/0710.5417
https://doi.org/10.1088/1126-6708/2007/07/081
https://arxiv.org/abs/0706.2298
https://doi.org/https://doi.org/10.1016/j.apnum.2004.09.028
http://www.sciencedirect.com/science/article/pii/S0168927404002016
http://www.sciencedirect.com/science/article/pii/S0168927404002016
https://doi.org/10.22323/1.105.0037
https://arxiv.org/abs/1011.2775
https://doi.org/https://doi.org/10.1016/j.laa.2006.04.018
http://www.sciencedirect.com/science/article/pii/S0024379506002230
http://www.sciencedirect.com/science/article/pii/S0024379506002230

	DDAMG
	Basics
	Performance

	Mutiple R.H.S.
	Motivation
	Implementation details
	Scaling results

	Block Solvers
	Basics
	Tuning plots
	Summary

	Outlook
	References

