
Implementation of Simultaneous Inversion of a
Multi-shifted Dirac Matrix for Twisted-Mass

Fermions within DDαAMG

Shuhei Yamamoto

Simone Bacchio, Jacob Finkenrath

The Cyprus Institute

July 30, 2021

Outline

DDαAMG
Basics
Performance

Mutiple R.H.S.
Motivation
Implementation details
Scaling results

Block Solvers
Basics
Tuning plots
Summary

Outlook

DDαAMG - Preconditioners
I To circumvent the issue of critical slowing down and

effectively invert the large sparse matrix, DDαAMG uses two
preconditioners: a smoother and coarse grid correction

I For a smoother, we use red-black Schwarz Alternating
Procedure (SAP) (Luscher 2007a).

I For coarse grid correction, we use Algebraic MultiGrid (AMG)
(Wesseling 1995).

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs556

DDαAMG - Performance

I MG correction accelerates convergence

I MG solvers outperforms traditional Krylov subspace solvers
like the conjugate gradient solver at small quark masses

I DDalphaAMG for twisted mass fermions is two orders of
magnitude faster than CG

DDαAMG - Scaling
I Bottlenneck of Multigrid methods is the scalability
I Ideal scaling breaks down, and performance stagnates for

parallelization above 125 Skylake nodes in case of a 3-level
MG approach

I With the current hardware trends higher core counts per node
the scalability window will even shrink further

10
0

10
1

10
2

10
310

0

10
1

10
2

SuperMUC-NG - SKL Nodes

re
l.

sp
ee

du
p

fo
r

a
si

ng
le

 r
hs

DDalphaAMG - Strong scaling - V = 160x80x80x80
single rhs - native

ideal scaling

Figure: A scaling plot on the ensemble of Nf = 2 + 1 + 1 twisted mass
clover with a ∼ 0.07fm and V = 803x160 at physical point simulated on
SuperMUC-NG (Intel Xeon (”Skylake”)) at LRZ

Multiple R.H.S. - Objectives
Originally,

I the code was written for a single rhs

I with multiple rhs, each rhs was inverted one by one

I vectorization of loops was done by chopping a single vector
into chunks

I this was done manually using instruction sets for a specific
SIMD extension

However,

I We can perform multiple inversions more efficiently.

I We also want to improve portability of our code letting
compilers perform optimization analysis and vectorization.

I Multiple inversion is perfect for rational approximation

Thus,

I We solve the system of equations with multiple right-hand
sides (rhs) simultaneously (b → b).

Multiple R.H.S. - Objectives

This allows us to invert

I Dirac matrices for twisted-mass fermions with different µ
shifts,

DTM(µi) = DW + i(µ+ δµi)γ5

for different rhs simultaneously.

I degenerate Dirac matrices for twisted-mass fermions for both
flavors together

DD(µ) = (DcW ⊗ I2) + iµ(γ5 ⊗ τ3)

=

(
DTM(µ) 0

0 DTM(−µ)

)

Multiple R.H.S. - Implementation

I We define a new data structure for a bundle of vectors.

I Vectors in the bundle are ordered in such a way that the index
on vectors runs the fastest.

I All low-level routines are rewrited to respect the new structure.

I We process a bundle of right-hand vectors simultaneously
using SIMD vectorization of loops.

I This reduces data loading time for the matrix.

v0 v1 v2 v0 v1 v2 v0 v1 v2 v0 v1 v2

Multiple R.H.S. - Implementation details

I Instead of manually vectorizing the loops using instruction
sets, we auto-vectorize the loops using pragmas:
Pragma(”unroll”), Pragma(”vector aligned”), and
Pragma(”ivdep”).

I These pragmas are applied to a for-loop of a pre-determined
iteration length: for(jj=0; jj<num_loop; jj++).

I The number of rhs are assumed to be multiple of num_loop.

I This shifts vectorization from 128 bit to 256 bit

Num. R.H.S. 1 rhs 4 rhs 8 rhs
Instruction Mix SP Flops DP Flops SP Flops DP Flops SP Flops DP Flops

128-bit 95.26% 86.59% 23.41% 4.99% 24.92% 3.60%
256-bit 2.58% 1.26% 60.68% 78.13% 74.02% 94.76%
Total 97.26% 84.03% 98.81%

Table: Vectorization Reports

Scaling

Conclusion:

I Breakdown of strong scaling can be pushed to higher
parallelization, mutiple rhs shows scalability up to 512 nodes

nodes

10
0

10
2

10
4

s
p
e
e
d
 u

p

10
0

10
1

10
2

10
3

1 rhs

4 rhs

8 rhs

nodes

10
0

10
2

10
4

s
p
e
e
d
 u

p
 o

f
c
o
a
rs

e
 g

ri
d

10
0

10
1

10
2

10
3

1 rhs

4 rhs

8 rhs

Block Solvers

Fast Accurate Block Linear krylOv Solver (Fabulous):

I Fabulous is an external library implementing block Krylov
solvers such as GMRES and GCR (Robbé and Sadkane 2006;
Morgan 2005; Agullo, Giraud, and Jing 2014)

I It combines BGMRES with detection of inexact breakdown,
deflated restarting, and incremental QR factorization.

I It provides several different orthogonalization schemes.

Its usage in DDαAMG:

I We linked the DDαAMG code to Fabulous and make it
available non-block GMRES or one of the solvers provided via
fabulous library at each level

I Our implementation of multiple r.h.s. stultifies inexact
breakdown.

Setup

Fixed parameters:

I Three-level DDαAMG

I The target residual at the top level: 1× 10−10

I Top level solver: FGMRES

Tuning parameters:

I Solvers at the middle and bottom levels (BGMRES, BGCR,
BGMRES with deflated restarting (DR), BGMRES with
incremental QR factorization (QR), BGMRES with DR and
QR (DRQR)

I Residuals at the middle and bottom levels

I Orthogonalization scheme (Classical Gram-Schmidt (CGS),
Modified Gram-Schmidt (MGS), Iterative CGS (ICGS),
Iterative MGS, each possibly with blocking)

I Size of deflation space at the bottom

Environment

The systems used for tuning:

I Lattice: 483 × 98 at physical point

I System: Cyclone (Intel Xeon Gold 6248) at The Cyprus
Institute

Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS

0 2 4 6 8 10 12 14
Orthoscheme iter

140

160

180

200

220

240

260

280
tim

e
(s

)

 CGS
Block CGS
 MGS
 ICGS
Block ICGS
 IMGS
Block IMGS

Tuning Residuals

Middle Solver: FGMRES; Bottom Solver: FGMRES

10 2 10 1

Residual at the bottom

100

110

120

130

tim
e

(s
)

rm = 1.00e-01
rm = 7.94e-02
rm = 6.31e-02
rm = 5.01e-02
rm = 3.98e-02
rm = 3.16e-02
rm = 2.51e-02
rm = 2.00e-02
rm = 1.58e-02
rm = 1.26e-02

Tuning Residuals

Middle Solver: BGCR; Bottom Solver: FGMRES

10 2 10 1

Residual at the bottom

95

100

105

110

115

120

125

tim
e

(s
)

rm = 2.00e-02
rm = 2.00e-02
rm = 2.51e-02
rm = 2.51e-02
rm = 3.16e-02
rm = 3.16e-02
rm = 3.98e-02
rm = 3.98e-02
rm = 5.01e-02
rm = 5.01e-02
rm = 6.31e-02
rm = 6.31e-02
rm = 7.94e-02
rm = 7.94e-02
rm = 1.00e-01
rm = 1.00e-01

Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Residuals

Middle Solver: BGCR; Bottom Solver: BGCR

10 2 10 1

Residual at the bottom

100

110

120

130

tim
e

(s
)

rm = 2.00e-02
rm = 2.00e-02
rm = 2.51e-02
rm = 2.51e-02
rm = 3.16e-02
rm = 3.16e-02
rm = 3.98e-02
rm = 3.98e-02
rm = 5.01e-02
rm = 5.01e-02
rm = 6.31e-02
rm = 6.31e-02
rm = 7.94e-02
rm = 7.94e-02
rm = 1.00e-01
rm = 1.00e-01

Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Residuals

Middle Solver: FGMRES; Bottom Solver: BGCR

10 2 10 1

Residual at the bottom

95

100

105

110

115

120

tim
e

(s
)

rm = 2.51e-02
rm = 2.51e-02
rm = 3.16e-02
rm = 3.16e-02
rm = 3.98e-02
rm = 3.98e-02
rm = 5.01e-02
rm = 5.01e-02
rm = 6.31e-02
rm = 6.31e-02
rm = 7.94e-02
rm = 7.94e-02
rm = 1.00e-01
rm = 1.00e-01

Figure: Comparison of convergence time between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Residuals

Middle Solver: BGCR; Bottom Solver: FGMRES

10 2 10 1

Residual at the bottom

6

8

10

12

14

16

18

20

Av
g

Ite
r C

ou
nt

 a
t t

he
 m

id
dl

e
le

ve
l

10 2 10 1

Residual at the bottom

100

150

200

250

300

350

400

Av
g

Ite
r C

ou
nt

 a
t t

he
 b

ot
to

m

Figure: Comparison of average iteration count between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Residuals

Middle Solver: BGCR; Bottom Solver: BGCR

10 2 10 1

Residual at the bottom

6

8

10

12

14

16

18

20

Av
g

Ite
r C

ou
nt

 a
t t

he
 m

id
dl

e
le

ve
l

10 2 10 1

Residual at the bottom

100

150

200

250

300

350

400

Av
g

Ite
r C

ou
nt

 a
t t

he
 b

ot
to

m

Figure: Comparison of average iteration count between AMG with only
non-block solvers (solid line) and AMG with mixed solvers (dashed line)

Tuning Deflation
Middle Solver: BGCR; Bottom Solver: BGCR or BGCRO with
deflation

2.6 × 101 2.8 × 101 3 × 101 3.2 × 101 3.4 × 101 3.6 × 101

Deflation Space Size

150

152

154

156

158

160

162

164
Av

g
Ite

r C
ou

nt
 a

t t
he

 B
ot

to
m

Max Krylov space size=120
Avg Iter Count w/t deflation

Figure: Comparison of average iteration count at the bottom level with
the middle residual 6.31× 10−2 and bottom residual 0.1 between BGCR
with and without deflation

Tuning Deflation

δ : 7→ 4, 1 in DTM,bottom = Dc + iδµγ5

4 rhs

DDalphaAMG

 GMRES

Fabulous

 BGMRES

Fabulous

 BGCRO

Fabulous

 BGRO-DR

 -shift 4

Fabulous

 BGRO-DR

 -shift 1

Fabulous

 BGMRES-DR

0

1000

2000

3000

4000

5000

T
o
ta

l
c
o
a
rs

e
 g

ri
d
 i
te

ra
ti
o
n
 c

o
u
n
t

Figure: 4 rhs

12 rhs

DDalphaAMG

 GMRES

Fabulous

 BGMRES

Fabulous

 BGCRO

Fabulous

 BGRO-DR

 -shift 4

Fabulous

 BGRO-DR

 -shift 1

Fabulous

 BGMRES-DR

0

1000

2000

3000

4000

5000

T
o
ta

l
c
o
a
rs

e
 g

ri
d
 i
te

ra
ti
o
n
 c

o
u
n
t

Figure: 12 rhs

Figure: Comparison of total iteration count at the bottom with non-block
FGMRES as the middle solver at middle residual, 0.1, bottom residual,
0.1, on the lattice of size 323 × 64.

Tuning Results

I Inversion by fabulous solvers takes more time to converge

I This is due to overhead of reordering of vectors and
MPI˙Allreduce calls in the inner product during inversion by
fabulous solvers

I As the solver converges quickly at the middle level, block
solvers are not effective when used at this level to reduce
iteration count

I Block solvers reduce iteration count when used at the bottom

I Deflation in combination with block solvers is helpful in some
cases

Outlook

I Scalability is extended by around a factor 5.

I Usage of fabulous in AMG did not reduce overall convergence
time due to its overhead

I When used at the bottom, a fabulous solver was effective in
reducing iteration count when the bottom residual is smaller
than 0.1

I Deflation needs more investigation to find a parameter region
where it is effective

Thank you!
E. Agullo, L. Giraud, and Y.-F. Jing. “Block GMRES Method with
Inexact Breakdowns and Deflated Restarting”. In: SIAM Journal on
Matrix Analysis and Applications 35.4 (2014), pp. 1625–1651. doi:
10.1137/140961912. eprint: https://doi.org/10.1137/140961912.
url: https://doi.org/10.1137/140961912.

Constantia Alexandrou, Simone Bacchio, and Jacob Finkenrath.
“Multigrid approach in shifted linear systems for the non-degenerated
twisted mass operator”. In: Comput. Phys. Commun. 236 (2019),
pp. 51–64. doi: 10.1016/j.cpc.2018.10.013. arXiv: 1805.09584
[hep-lat].

R. Babich et al. “Adaptive multigrid algorithm for the lattice
Wilson-Dirac operator”. In: Phys. Rev. Lett. 105 (2010), p. 201602.
doi: 10.1103/PhysRevLett.105.201602. arXiv: 1005.3043
[hep-lat].

Ronald Babich et al. “The Role of multigrid algorithms for LQCD”. In:
PoS LAT2009 (2009). Ed. by Chuan Liu and Yu Zhu, p. 031. doi:
10.22323/1.091.0031. arXiv: 0912.2186 [hep-lat].

J. Brannick et al. “Adaptive Multigrid Algorithm for Lattice QCD”. In:
Phys. Rev. Lett. 100 (2008), p. 041601. doi:
10.1103/PhysRevLett.100.041601. arXiv: 0707.4018 [hep-lat].

James Brannick et al. “Multigrid Preconditioning for the Overlap
Operator in Lattice QCD”. In: Numer. Math. 132.3 (2016),
pp. 463–490. doi: 10.1007/s00211-015-0725-6. arXiv: 1410.7170
[hep-lat].

M.A. Clark et al. “The Removal of critical slowing down”. In: PoS
LATTICE2008 (2008). Ed. by Christopher Aubin et al., p. 035. doi:
10.22323/1.066.0035. arXiv: 0811.4331 [hep-lat].

Saul D. Cohen et al. “Multigrid Algorithms for Domain-Wall Fermions”.
In: PoS LATTICE2011 (2011). Ed. by Pavlos Vranas, p. 030. doi:
10.22323/1.139.0030. arXiv: 1205.2933 [hep-lat].

A. Frommer et al. “An adaptive aggregation based domain
decomposition multilevel method for the lattice wilson dirac operator:
multilevel results”. In: (July 2013). arXiv: 1307.6101 [hep-lat].

Martin Luscher. “Deflation acceleration of lattice QCD simulations”. In:
JHEP 12 (2007), p. 011. doi: 10.1088/1126-6708/2007/12/011.
arXiv: 0710.5417 [hep-lat].

Martin Luscher. “Local coherence and deflation of the low quark modes
in lattice QCD”. In: JHEP 07 (2007), p. 081. doi:
10.1088/1126-6708/2007/07/081. arXiv: 0706.2298 [hep-lat].

Ronald B. Morgan. “Restarted block-GMRES with deflation of
eigenvalues”. In: Applied Numerical Mathematics 54.2 (2005). 6th
IMACS, pp. 222–236. issn: 0168-9274. doi:
https://doi.org/10.1016/j.apnum.2004.09.028. url:
http://www.sciencedirect.com/science/article/pii/

S0168927404002016.

J.C. Osborn et al. “Multigrid solver for clover fermions”. In: PoS
LATTICE2010 (2010). Ed. by Giancarlo Rossi, p. 037. doi:
10.22323/1.105.0037. arXiv: 1011.2775 [hep-lat].

Mickaël Robbé and Miloud Sadkane. “Exact and inexact breakdowns in
the block GMRES method”. In: Linear Algebra and its Applications
419.1 (2006), pp. 265–285. issn: 0024-3795. doi:
https://doi.org/10.1016/j.laa.2006.04.018. url: http://www.
sciencedirect.com/science/article/pii/S0024379506002230.

P. Wesseling. INTRODUCTION TO MULTIGRID METHODS.
Tech. rep. 1995.

https://doi.org/10.1137/140961912
https://doi.org/10.1137/140961912
https://doi.org/10.1137/140961912
https://doi.org/10.1016/j.cpc.2018.10.013
https://arxiv.org/abs/1805.09584
https://arxiv.org/abs/1805.09584
https://doi.org/10.1103/PhysRevLett.105.201602
https://arxiv.org/abs/1005.3043
https://arxiv.org/abs/1005.3043
https://doi.org/10.22323/1.091.0031
https://arxiv.org/abs/0912.2186
https://doi.org/10.1103/PhysRevLett.100.041601
https://arxiv.org/abs/0707.4018
https://doi.org/10.1007/s00211-015-0725-6
https://arxiv.org/abs/1410.7170
https://arxiv.org/abs/1410.7170
https://doi.org/10.22323/1.066.0035
https://arxiv.org/abs/0811.4331
https://doi.org/10.22323/1.139.0030
https://arxiv.org/abs/1205.2933
https://arxiv.org/abs/1307.6101
https://doi.org/10.1088/1126-6708/2007/12/011
https://arxiv.org/abs/0710.5417
https://doi.org/10.1088/1126-6708/2007/07/081
https://arxiv.org/abs/0706.2298
https://doi.org/https://doi.org/10.1016/j.apnum.2004.09.028
http://www.sciencedirect.com/science/article/pii/S0168927404002016
http://www.sciencedirect.com/science/article/pii/S0168927404002016
https://doi.org/10.22323/1.105.0037
https://arxiv.org/abs/1011.2775
https://doi.org/https://doi.org/10.1016/j.laa.2006.04.018
http://www.sciencedirect.com/science/article/pii/S0024379506002230
http://www.sciencedirect.com/science/article/pii/S0024379506002230

	DDAMG
	Basics
	Performance

	Mutiple R.H.S.
	Motivation
	Implementation details
	Scaling results

	Block Solvers
	Basics
	Tuning plots
	Summary

	Outlook
	References

