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Introduction
I Machine learning (ML) is a research field of information and computer

science.

I Recently, the ideas and methods from ML, particularly the neural network
(NN) have been applied to the studies of many-body problems in Physics.

I Restricted Boltzmann machine ⇒ speed up Monte Carlo simulations.

I Supervised (and unsupervised) NNs ⇒ Ground state properties and critical
points of various models.

I These applications are very successful.

I Great potential applications of ML in physical systems.

I In this talk, we will focus on employing methods of NN in studying phase
transitions of several three-dimensional (3D) and two-dimensional (2D)
models.



Employed Neural Network: Multi-layer Perceptron
(MLP)

I Multi-layer Perceptron (MLP):
I Input layer (training objects x0, assign a label ŷ0 for each x0).
I One hidden layer.
I Output layer (output y0 of x0).
I The hidden layer consists of 512 (or 1024) independent nodes.
I Each of the nodes in the hidden layer is connected to each of the

elements in its consecutive layers (input and output layers) ⇒ weights.
I The activation functions applied between the relevant layers: ReLU and

softmax.
I The loss function which is considered to determine the difference

between the real output (y0) and desired output (ŷ0): categorical cross
entropy.

I The optimizer which is used to adjust weights so that real output will
match the expected labels eventually ⇒ get the desired weights: Adam



Conventional procedure of applying (supervised) NN
to study the phase transition of a many-body system

I Training stage:
I Assign a label (in the output layer) to each element in the training set

(input layer) ⇒ optmization ⇒ desired weights.

I Validation stage: to make sure that the trained-NN produces the outcomes
correctly (using part of the training set).

I Testing stage: use the obtained weights (trained-NN) to calculate the desired
results.



Conventional NN procedure for studying Ising model

I Several temperatures below Tc are picked.

I Generate (a) few thousands configurations for each of the chosen
temperatures.

I Assign the label (1, 0) for every generated configuration described above.

I Similar steps apply to the other side of the phase transition (T > Tc), but this
time the assigned label is (0, 1).

I With this set up of training, one expects that in the testing stage, the
temperature T corresponding to the output vector (0.5, 0.5) is the
temperature where the phase transition takes place.



Critical temperature of 2D Ising model
Carrasquilla and Melko (2017)



Disadvantages of the standard training procedure

I One needs to generate few to several thousand configurations for the training.

I A separate training is required for every studied model and for each used
system size.

I Such a procedure is time comsuming.



Disadvantages of the standard prediction (testing)
stage

I Few to several thousand real configurations are used for the prediction.

I It takes huge amount of storage space if system of larger sizes are
considered.



Training set considered in our study

I In our study, the training set consists of only TWO configurations.

I Each of the configurations is a 1D lattice made up of 120 sites.

I One of the two configurations takes the integer 1 as the values for all of its
elements.

I The sites of the other configuration have the integer 0 as their values.

I The related labels are (0, 1) and (1, 0).

I With our training strategy, a factor of several hundred to a few thousand in
efficiency is obtained (The time needed for the training in our study is much
less than the standard approaches).



Prediction procedure in our study

I Instead of using real configurations, we use bulk quantities to construct the
needed configurations (120 sites 1D lattices) for the prediction.

I Bulk quantities that saturate to distinct values at the high and the low
temperature regions can be employed in our calculations.

I The detailed procedures are in arXiv:2103.10846 (Which contains a second
method of conducting the prediction not described here).

I With such a prediction procedure, only few permille fraction of the storage
space needed for a typical NN calculation is required in our investigation.

I Binder ratios Q1 and Q2.



The method of determining the critical temperatures
of the studied models

I Crossing of the two components of the output vectors.

I The minimum of the magnitude of the output vectors.



I Only one NN is trained, and this only one NN is applied to calculate
the critical points of all the considered models.



Results of the 3D classical O(3) model

Q1, 1D training, L = 12(left) and L = 48(right).
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Result of the 3D 5-state ferromagnetic Potts model 1

Q1, 1D training, L = 20
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Result of the 3D 5-state ferromagnetic Potts model 2

Configuration, 1D training, L = 20
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Result of a 3D dimerized quantum spin Heisenberg
model

Q2, 2D training.
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Results of a 2D classical XY model

Q1, 1D training of 200 sites.
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Discussions and Conclusions
I An extremely efficient and universal NN is built. The infrastructure of our NN

is much implier than the conventional ones typical used in the literature when
studying phase transitions is concerned.

I The training is conducted on a 1D lattice of 120 sites.

I Bulk quantities are employed to construct the needed configurations (120
sites 1D lattices) for the prediction.

I The (only one) NN successfully calculates the critical points of several 3D and
2D models including the 3D O(3) model, the 3D 5-state Potts model, a 3D
dimerized quantum spin Heisenberg model, and the 2D classical XY model.

I The built NN can be applied to many (other) models as well when studying
the associated phase transitions (critical points) is concerned.

I Compared to any known schemes in the literature, our NN is several hundred
to a few thousand times more efficient in both the computation and storage.
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