Novel Algorithms for Computing Correlation Functions of Large Nuclei

Nabil Humphrey

Special Research Centre for the Subatomic Structure of Matter (CSSM)
University of Adelaide

July 25, 2021

Collaborators:
Ross Young (CSSM), James Zanotti (CSSM), Phiala Shanahan (MIT CTP), Will Detmold (MIT CTP), Artur Avkhadiev (MIT CTP)
(1) Introduction
(2) Factor Trees

Nuclear Structure Through Lattice QCD

- This work seeks to enable more detailed lattice probes into the nuclear structure of (relatively) large nuclei
- Key Challenges:
(1) Signal-to-Noise scaling: errors generally scale poorly with quark number
(2) Identifying physically relevant states: achieving good overlap with the ground-state becomes increasingly difficult for many-hadron systems
(3) Numerical correlator evaluation:
- Wick contractions scale factorially in quark number
- Index set scales exponentially in quark number
- Floating point errors interact poorly with delicate cancellations
- Key Resources:
(1) Discrete permutation symmetry within interpolating operators - both term-wise and factor-wise
(2) Common subexpressions
(3) Highly iterated computational workflow: it's worth putting in upfront resources to save on compute overall
- Hadron Blocks [e.g. Detmold, Orginos (2013) or Doi, Endres (2013)]
- Index Lists [Doi, Endres (2013)]
- For an expensive tensor $C_{\alpha^{\prime} \beta^{\prime}}^{p n}\left(\xi_{1}^{\prime}, \ldots, \xi_{6}^{\prime}\right)$, pre-compute which subset of the index set has non-vanishing contribution to the correlator
- Recursive Formulation [e.g. for mesons: Detmold, Savage (2010)]
- Determinant Formulation [Detmold, Orginos (2013)]
- Map fermion anti-symmetry onto matrix determinant anti-symmetry, then use LU factorisation to attain $\mathcal{O}\left(n^{3}\right)$ scaling rather than $\mathcal{O}(n!)$ scaling - only Wick Contraction scaling, not index set scaling
- Tensor Expression Canonicalisation (using Vertex-Labelled Graph Canonicalisation)
- Map the tensor network of a tensor expression to a vertex-labelled graph such that graph isomorphism corresponds to tensor expression equivalence
- Factor Trees
- Tensor E-graphs
- Simultaneously explore all possible common tensor subexpressions and extract the set that minimises a cost function

Interpolating Operators

- Begin with standard baryon operators, e.g.:

$$
\begin{aligned}
p^{\alpha} & =\epsilon_{a b c}\left(u_{a}^{T}\left(C \gamma_{5}\right) d_{b}\right) u_{c}^{\alpha} \\
n^{\alpha} & =\epsilon_{a b c}\left(u_{a}^{T}\left(C \gamma_{5}\right) d_{b}\right) d_{c}^{\alpha} \\
p_{ \pm}^{\alpha} & =\epsilon_{a b c}\left(u_{a}^{T}\left(C \gamma_{5} P_{ \pm}\right) d_{b}\right) u_{c}^{\alpha} \\
n_{ \pm}^{\alpha} & =\epsilon_{a b c}\left(u_{a}^{T}\left(C \gamma_{5} P_{ \pm}\right) d_{b}\right) d_{c}^{\alpha}
\end{aligned}
$$

- Construct candidate multi-baryon operators, e.g.:

$$
\begin{aligned}
& \text { Deuteron I: } D_{l}(x)=n^{T}(x)\left(C \gamma_{5}\right) p(x) \\
& \text { Deuteron II: } D_{I I}(x)=\frac{1}{\sqrt{2}}\left[n^{T}(x)\left(C \gamma_{5}\right) p(x)-p^{T}(x)\left(C \gamma_{5}\right) n(x)\right] \\
& \text { Helium-3 I: }{ }^{3} H e_{l}^{j}(x)=p_{-}^{T}(x)\left(C \gamma_{5}\right) n_{+}(x) p_{+}^{j}(x) \\
& \text { Helium-3 II: }{ }^{3} H e_{I I}^{j}(x)=\frac{1}{\sqrt{6}}\left[p_{-}^{T}(x)\left(C \gamma_{5}\right) n_{+}(x) p_{+}^{j}(x)-p_{+}^{T}(x)\left(C \gamma_{5}\right) n_{+}(x) p_{-}^{j}(x)\right. \\
& +n_{+}^{T}(x)\left(C \gamma_{5}\right) p_{+}(x) p_{-}^{j}(x)-n_{+}^{T}(x)\left(C \gamma_{5}\right) p_{-}(x) p_{+}^{j}(x) \\
& \left.+p_{+}^{T}(x)\left(C \gamma_{5}\right) p_{-}(x) n_{+}^{j}(x)-p_{-}^{T}(x)\left(C \gamma_{5}\right) p_{+}(x) n_{+}^{j}(x)\right]
\end{aligned}
$$

Computational Workflow

for each e.g. time slice t :

- Construct $C(t)$ from e.g. proton: $p_{\alpha}(x)=\epsilon_{a b c} u_{\sigma}^{a}(x)\left(C \gamma_{5}\right)_{\sigma \rho} d_{\rho}^{b}(x) u_{\alpha}^{c}(x)$

$$
\begin{aligned}
& c(t)=\left\langle\sum_{\vec{x}} p_{\alpha}(x) \bar{p}_{\alpha^{\prime}}(0)\right\rangle \\
& =\sum \epsilon_{a b c}{ }^{\epsilon} a_{a^{\prime} b^{\prime} c^{\prime}}\left(C \gamma_{5}\right) \sigma \rho\left(C \gamma_{5}\right)_{\sigma^{\prime} \rho^{\prime}}\left\langle u_{\sigma}^{a}(x) d_{\rho}^{b}(x) u_{\alpha}^{c}(x) \bar{u}_{\sigma^{\prime}}^{a^{\prime}}(0) \bar{d}_{\rho^{\prime}}{ }^{b^{\prime}}(0) \bar{u}_{\alpha^{\prime}}^{c^{\prime}}(0)\right\rangle \\
& \vec{x} \\
& =\sum_{\vec{x}} \epsilon_{a b c} \epsilon_{a^{\prime} b^{\prime} c^{\prime}}\left(C \gamma_{5}\right)_{\sigma \rho}\left(C \gamma_{5}\right)_{\sigma^{\prime}} \rho^{\prime}\left[-S_{\sigma \sigma^{\prime}}^{u ; a a^{\prime}}(x) S_{\alpha \alpha^{\prime}}^{u ; c c^{\prime}}(x)+S_{\sigma \alpha^{\prime}}^{u ; a c^{\prime}}(x) S_{\alpha \sigma^{\prime}}^{u ; c a^{\prime}}(x)\right] S_{\rho \rho^{\prime}}^{d ; b b^{\prime}}(x)
\end{aligned}
$$

- Evaluate $C(t)$ for the corresponding time slice of $S_{\delta_{1}, \delta_{2}}^{f ; c_{1}, c_{2}}\left(x-x^{\prime}\right)$

Hadron Blocks

- Construct a tensor corresponding to a set of quarks created at the source and annihilated as a momentum-projected hadron at the sink
- Block expressions are re-used in the course of evaluating the multi-hadron correlator
- The factorial number of Wick Contractions is suppressed by a factor of 2^{A} for A baryons

$$
f_{\alpha}^{P}\left(x^{\prime}, a^{\prime}, \beta^{\prime}, b^{\prime}, \gamma^{\prime}, c^{\prime}, \alpha^{\prime}\right):=\left\langle\sum_{\vec{x}^{\prime}} p_{\alpha}\left(x^{\prime}\right) \bar{u}_{\beta^{\prime}}^{a^{\prime}}(x) \bar{d}_{\gamma^{\prime}}^{b^{\prime}}(x) \bar{u}_{\alpha^{\prime}}^{c^{\prime}}(x)\right\rangle
$$

Hadron Blocks Benchmark

Deuteron II

Helium-4

- Hadron Blocks give a clear performance improvement even for light nuclei
- Hadron block cost dominates for the Deuteron, but remains constant* compared to the exponentially growing correlator cost
- Benchmark Details: Measuring wall-clock time in milliseconds on a single core of an Intel Xeon Scalable Cascade Lake processor; Lattice Volume 643; Linked to Chroma for Propagator computation; Helium-4 Operator as in [Yamazaki (2010)] *Hadron Block cost differs between relativistic (e.g. Deuteron II) and non-relativistic (e.g. Helium-4) forms.
(1) Introduction
(2) Factor Trees

Multiplicity Histograms

- Take correlators $\epsilon_{a b c} \ldots \Gamma_{\alpha \beta} \ldots f_{\alpha}^{P / N}(\ldots) \ldots$ sum over all internal indices $a, b, c, \ldots \alpha, \beta, \ldots$, leaving strings of $f_{\alpha}^{P / N}$-like terms
- Sort, group, and assign multiplicities to identically equal terms
- The vast majority of terms have multiplicity >1, with some terms having multiplicity > 1
- Exploit this property by computing each degenerate term once and multiply by the multiplicity-adjusted coefficient

Factor Trees

- Storing the full set of terms carries an infeasible memory footprint
- We have the property that the set of factors (e.g. $\left\{f_{\alpha}^{P / N}\right\}$) is small compared to the set of terms, so we can expect a high degree of factorisation

$$
\begin{aligned}
E & =5 T_{122}^{(1)} T_{232}^{(2)}+T_{123}^{(1)} T_{232}^{(2)}-T_{123}^{(1)} T_{323}^{(2)} \\
& =5 T_{122}^{(1)} T_{232}^{(2)}+T_{123}^{(1)}\left(T_{232}^{(2)}-T_{323}^{(2)}\right)
\end{aligned}
$$

Abstract Factor Tree

Abstract Factor Trees \rightarrow Linearised Factor Trees

- Abstract Factor Trees have each node pointing to it's children nodes. This is highly inefficient:
- For a saturated expression (term set dominates the factor set), the number of children for each node is \mathcal{O} (num factors) \Rightarrow the dominant storage cost is to store the links.
- Cache performance is terrible
- Linearised Factor Trees don't store links: only the factors and the number of children

Correlator Evaluation Benchmarks

Benchmark Details: Measuring wall-clock time in milliseconds on a single core of an Intel Xeon Scalable Cascade Lake processor; Lattice Volume 64³; Linked to Chroma for Propagator computation

- Hadron blocks have excellent performance compared to a naive implementation
- Factor trees present promising performance improvements for correlators of light nuclei
- The hadron block cost dominates the correlator cost for light nuclei, but beyond about Helium-4 the correlator cost becomes the relevant cost to optimise
- There are memory constraints in scaling factor trees beyond light nuclei, motivating a hybrid factor tree / tensor e-graph approach for larger systems

(3) Backup

Nabil Humphrey

Tensor E-graphs

E-graphs (Equivalence Graphs) [Willsey, et al. (2021)]: Perform all re-writes simultaneously and extract the optimal re-write path as the argmin of some cost function.

Re-writes

Given a tensor expression, split into two pieces, canonicalise, and then collect common subexperssions.

$$
\begin{aligned}
\left(C \gamma_{5}\right)_{\alpha \beta}\left(C \gamma_{5}\right)_{\gamma \delta} T_{\alpha \beta} T_{\gamma \delta} & \rightarrow\left(C \gamma_{5}\right)_{\alpha \beta} T_{\alpha \beta} \times\left(C \gamma_{5}\right)_{\gamma \delta} T_{\gamma \delta} \\
& \rightarrow\left(C \gamma_{5}\right)_{\alpha \beta} T_{\alpha \beta} \times\left(C \gamma_{5}\right)_{\alpha \beta} T_{\alpha \beta} \\
& \rightarrow B^{2} \quad \text { where } B=\left(C \gamma_{5}\right)_{\alpha \beta} T_{\alpha \beta}
\end{aligned}
$$

Vertex-Labelled Graph Canonicalisation

Definition: Graph Canonicalisation Map

Given two graphs,
$G_{1}, G_{2} \in \boldsymbol{G}(V):=\{$ labelled (simple) graphs with vertex set V with $|V|=: n\}$
And given two ordered vertex colourings $\pi_{1}, \pi_{2} \in \boldsymbol{\Pi}(V):=\left\{\left(V_{1}, \ldots, V_{r}\right) \mid\right.$ $\left.\dot{U}_{j} V_{j}=V\right\}$ related by $\pi_{2}=\pi_{1}^{\gamma}$ for some $\gamma \in S_{n}$, then a Graph Canonicalisation Map $C: \boldsymbol{G}(V) \times \boldsymbol{\Pi}(V) \rightarrow \boldsymbol{G}(V)$ satisfies $C\left(G_{1}, \pi_{1}\right)=C\left(G_{2}, \pi_{2}\right)$ if and only if $\exists \delta \in S_{n}$ such that $G_{2}=G_{1}^{\delta}$ and $\pi_{2}=\pi_{1}^{\delta}$.

$$
\begin{aligned}
& G_{1}=1 \\
& G_{2}=\begin{array}{ll}
0 \\
1 & O \\
2 & 0 \\
4
\end{array}, \quad \pi_{2}^{3}=(\{3,4,5\},\{0,1,2\})
\end{aligned}
$$

Tensor Network Formulation

Abstract Factor Trees

Definition:Abstract Factor Tree

Given a tensor expression sum $E=\sum_{a} c_{a} E_{a}$, a corresponding Abstract Factor Tree τ of depth m is a rooted tree on the vertex set of tensor elements together with a non-zero real number for each leaf such that each root-to-leaf path corresponds to a set of terms in the tensor expression sum. Moreover, the sum of all root-to-leaf paths is equal to the original tensor expression sum.

Linearised Tree Evaluation

```
Algorithm 1: Linearised Factor Tree Evaluation
Input: tree\{ factors, children, coeffs \}
Output: sum :=0
Data: values
index := []
position := [ tree \(\rightarrow\) factors[0] ]
cumulativeProd \(:=[\) values[ position[0] ] ]
leafldx :=0
while True do
    nextPos := position[-1] +1
    if tree \(\rightarrow\) children[ position[-1] ] \(==0\) then
        sum \(+=\) tree \(\rightarrow\) coeffs[leafldx] \(\times\) cumulativeProd \([-1]\)
        leafldx \(+=1\)
        success := false
        while! index \(\rightarrow\) empty() do
            index[-1] \(+=1\)
            if index[-1] \(<\) tree \(\rightarrow\) children[ position[-2]] then
                success \(=\) true
                position[-1] \(=\) nextPos
                cumulativeProd[-1] \(=\) cumulativeProd \([-2] \times\) values \([\) tree \(\rightarrow\) factors[nextPos] \(]\)
                break
            else
                position \(=\) position[:-1]
                index \(=\) index \([:-1]\)
                cumulativeProd \(=\) cumulativeProd \([:-1]\)
                termValues \(=\) termValues \([-1]\)
            if! success then
                done
    else
        position.append( nextPos )
            index.append( 0 )
            cumulativeProd.append( cumulativeProd[ -1 ] \(\times\) values[ tree \(\rightarrow\) factors[nextPos] ] )
```

