Novel Algorithms for Computing Correlation Functions of Large Nuclei

Nabil Humphrey

Special Research Centre for the Subatomic Structure of Matter (CSSM) University of Adelaide

July 25, 2021

Collaborators: Ross Young (CSSM), James Zanotti (CSSM), Phiala Shanahan (MIT CTP), Will Detmold (MIT CTP), Artur Avkhadiev (MIT CTP)

• • = • • = •

5 1 N Q Q

2 Factor Trees

▲日▼▲母▼▲目▼▲目▼ 釣べ⊙

Nabil Humphrey Novel Algorithms for Computing Correlation Functions of Large Nuclei

- This work seeks to enable more detailed lattice probes into the nuclear structure of (relatively) large nuclei
- Key Challenges:
 - Signal-to-Noise scaling: errors generally scale poorly with quark number
 - Identifying physically relevant states: achieving good overlap with the ground-state becomes increasingly difficult for many-hadron systems
 - 8 Numerical correlator evaluation:
 - Wick contractions scale factorially in quark number
 - Index set scales exponentially in quark number
 - Floating point errors interact poorly with delicate cancellations
- Key Resources:
 - Discrete permutation symmetry within interpolating operators both term-wise and factor-wise
 - 2 Common subexpressions
 - e) Highly iterated computational workflow: it's worth putting in upfront resources to save on compute overall

A B K A B K

5 1 N Q Q

- Hadron Blocks [e.g. Detmold, Orginos (2013) or Doi, Endres (2013)]
- Index Lists [Doi, Endres (2013)]
 - For an expensive tensor $C^{pn}_{\alpha'\beta'}(\xi'_1,...,\xi'_6)$, pre-compute which subset of the index set has non-vanishing contribution to the correlator
- Recursive Formulation [e.g. for mesons: Detmold, Savage (2010)]
- Determinant Formulation [Detmold, Orginos (2013)]
 - Map fermion anti-symmetry onto matrix determinant anti-symmetry, then use LU factorisation to attain $\mathcal{O}(n^3)$ scaling rather than $\mathcal{O}(n!)$ scaling only Wick Contraction scaling, not index set scaling
- Tensor Expression Canonicalisation (using Vertex-Labelled Graph Canonicalisation)
 - Map the tensor network of a tensor expression to a vertex-labelled graph such that graph isomorphism corresponds to tensor expression equivalence

• Factor Trees

- Tensor E-graphs
 - Simultaneously explore all possible common tensor subexpressions and extract the set that minimises a cost function

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Factor Trees

• Begin with standard baryon operators, e.g.:

$$p^{\alpha} = \epsilon_{abc}(u_a^T(C\gamma_5)d_b)u_c^{\alpha}$$
$$n^{\alpha} = \epsilon_{abc}(u_a^T(C\gamma_5)d_b)d_c^{\alpha}$$
$$p_{\pm}^{\alpha} = \epsilon_{abc}(u_a^T(C\gamma_5P_{\pm})d_b)u_c^{\alpha}$$
$$n_{\pm}^{\alpha} = \epsilon_{abc}(u_a^T(C\gamma_5P_{\pm})d_b)d_c^{\alpha}$$

• Construct candidate multi-baryon operators, e.g.:

Deuteron I:
$$D_{l}(x) = n^{T}(x)(C\gamma_{5})p(x)$$

Deuteron II: $D_{ll}(x) = \frac{1}{\sqrt{2}} \left[n^{T}(x)(C\gamma_{5})p(x) - p^{T}(x)(C\gamma_{5})n(x) \right]$
Helium-3 I: ${}^{3}He_{l}^{j}(x) = p_{-}^{T}(x)(C\gamma_{5})n_{+}(x)p_{+}^{j}(x)$
Helium-3 II: ${}^{3}He_{ll}^{j}(x) = \frac{1}{\sqrt{6}} \left[p_{-}^{T}(x)(C\gamma_{5})n_{+}(x)p_{+}^{j}(x) - p_{+}^{T}(x)(C\gamma_{5})n_{+}(x)p_{-}^{j}(x) + n_{+}^{T}(x)(C\gamma_{5})p_{+}(x)p_{-}^{j}(x) - n_{+}^{T}(x)(C\gamma_{5})p_{-}(x)p_{+}^{j}(x) + p_{+}^{T}(x)(C\gamma_{5})p_{-}(x)n_{+}^{j}(x) - p_{-}^{T}(x)(C\gamma_{5})p_{+}(x)n_{+}^{j}(x) \right]$

CSSM, University of Adelaide

Computational Workflow

for each e.g. time slice t:

• Construct C(t) from e.g. proton: $p_{\alpha}(x) = \epsilon_{abc} u^{a}_{\sigma}(x) (C\gamma_{5})_{\sigma\rho} d^{b}_{\rho}(x) u^{c}_{\alpha}(x)$

$$\begin{split} C(t) &= \left\langle \sum_{\vec{x}} \rho_{\alpha}(x) \overline{\rho}_{\alpha'}(0) \right\rangle \\ &= \sum_{\vec{x}} \epsilon_{abc} \epsilon_{a'b'c'}(C\gamma_{5})_{\sigma\rho}(C\gamma_{5})_{\sigma'\rho'} \left\langle u^{a}_{\sigma}(x) d^{b}_{\rho}(x) u^{c}_{\alpha}(x) \overline{u}^{a'}_{\sigma'}(0) \overline{d}^{b'}_{\rho'}(0) \overline{u}^{c'}_{\alpha'}(0) \right\rangle \\ &= \sum_{\vec{x}} \epsilon_{abc} \epsilon_{a'b'c'}(C\gamma_{5})_{\sigma\rho}(C\gamma_{5})_{\sigma'\rho'} \left[-S^{u;aa'}_{\sigma\sigma'}(x) S^{u;cc'}_{\alpha\alpha'}(x) + S^{u;ac'}_{\sigma\alpha'}(x) S^{u;ca'}_{\alpha\sigma'}(x) \right] S^{d;bb'}_{\rho\rho'}(x) \end{split}$$

• Evaluate C(t) for the corresponding time slice of $S^{f;c_1,c_2}_{\delta_1,\delta_2}(x-x')$

- Block expressions are re-used in the course of evaluating the multi-hadron correlator
- The factorial number of Wick Contractions is suppressed by a factor of 2^A for A baryons

Nabil Humphrey

Novel Algorithms for Computing Correlation Functions of Large Nuclei

= 200

- Hadron Blocks give a clear performance improvement even for light nuclei
- Hadron block cost dominates for the Deuteron, but remains constant* compared to the exponentially growing correlator cost
- Benchmark Details: Measuring wall-clock time in milliseconds on a single core of an Intel Xeon Scalable Cascade Lake processor; Lattice Volume 64³; Linked to Chroma for Propagator computation; Helium-4 Operator as in [Yamazaki (2010)]
 *Hadron Block cost differs between relativistic (e.g. Deuteron II) and non-relativistic (e.g. Helium-4) forms.

<日 > < 同 > < 目 > < 目 > < 目 > < 日 > < 回 > < 0 < 0 </p>

2 Factor Trees

▲日▼▲母▼▲目▼▲目▼ 釣べ⊙

Nabil Humphrey Novel Algorithms for Computing Correlation Functions of Large Nuclei

Multiplicity Histograms

- Take correlators $\epsilon_{abc} \dots \Gamma_{\alpha\beta} \dots f_{\alpha}^{P/N}(\dots) \dots$: sum over all internal indices $a, b, c, \dots \alpha, \beta, \dots$, leaving strings of $f_{\alpha}^{P/N}$ -like terms
- Sort, group, and assign multiplicities to identically equal terms
- The vast majority of terms have multiplicity > 1, with some terms having multiplicity \gg 1
- Exploit this property by computing each degenerate term once and multiply by the multiplicity-adjusted coefficient

Nabil Humphrey

Novel Algorithms for Computing Correlation Functions of Large Nuclei

10 / 14

Factor Trees

- Storing the full set of terms carries an infeasible memory footprint
- We have the property that the set of factors (e.g. $\{f_{\alpha}^{P/N}\}\)$ is small compared to the set of terms, so we can expect a high degree of factorisation

• • = • • = •

3 3 9 9 9 9

Nabil Humphrey

Abstract Factor Trees \rightarrow Linearised Factor Trees

- Abstract Factor Trees have each node pointing to it's children nodes. This is highly inefficient:
 - For a saturated expression (term set dominates the factor set), the number of children for each node is O(num factors) ⇒ the dominant storage cost is to store the links.
 - Cache performance is terrible
- Linearised Factor Trees don't store links: only the factors and the number of children

Abstract Factor Tree

< ロト < 同ト < ヨト < ヨト

EL SQA

Correlator Evaluation Benchmarks

10¹ Correlator via Hadron Blocks Correlator via

Benchmark Details: Measuring wall-clock time in milliseconds on a single core of an Intel Xeon Scalable Cascade Lake processor; Lattice Volume 64^3 ; Linked to Chroma for Propagator computation

Nabil Humphrey

- Hadron blocks have excellent performance compared to a naive implementation
- Factor trees present promising performance improvements for correlators of light nuclei
- The hadron block cost dominates the correlator cost for light nuclei, but beyond about Helium-4 the correlator cost becomes the relevant cost to optimise
- There are memory constraints in scaling factor trees beyond light nuclei, motivating a hybrid factor tree / tensor e-graph approach for larger systems

A B F A B F

EL SQA

▲日▼▲母▼▲目▼▲目▼ 釣べ⊙

Nabil Humphrey Novel Algorithms for Computing Correlation Functions of Large Nuclei

Backup 000000

Tensor E-graphs

E-graphs (Equivalence Graphs) [Willsey, et al. (2021)]: Perform all re-writes simultaneously and extract the optimal re-write path as the argmin of some cost function.

Re-writes

Given a tensor expression, split into two pieces, canonicalise, and then collect common subexperssions.

$$\begin{aligned} (C\gamma_{5})_{\alpha\beta}(C\gamma_{5})_{\gamma\delta}T_{\alpha\beta}T_{\gamma\delta} &\to (C\gamma_{5})_{\alpha\beta}T_{\alpha\beta} \times (C\gamma_{5})_{\gamma\delta}T_{\gamma\delta} \\ &\to (C\gamma_{5})_{\alpha\beta}T_{\alpha\beta} \times (C\gamma_{5})_{\alpha\beta}T_{\alpha\beta} \\ &\to B^{2} \quad \text{where } B = (C\gamma_{5})_{\alpha\beta}T_{\alpha\beta} \end{aligned}$$

Nabil Humphrey

Novel Algorithms for Computing Correlation Functions of Large Nuclei

5 1 S Q Q

Definition: Graph Canonicalisation Map

Given two graphs,

 $G_1, G_2 \in \boldsymbol{G}(V) := \{ \text{labelled (simple) graphs with vertex set } V \text{ with } |V| =: n \}$

And given two ordered vertex colourings $\pi_1, \pi_2 \in \Pi(V) := \{(V_1, ..., V_r) \mid \dot{\cup}_j V_j = V\}$ related by $\pi_2 = \pi_1^{\gamma}$ for some $\gamma \in S_n$, then a *Graph Canonicalisation* Map $C : \mathbf{G}(V) \times \Pi(V) \to \mathbf{G}(V)$ satisfies $C(G_1, \pi_1) = C(G_2, \pi_2)$ if and only if $\exists \delta \in S_n$ such that $G_2 = G_1^{\delta}$ and $\pi_2 = \pi_1^{\delta}$.

Nabil Humphrey

Novel Algorithms for Computing Correlation Functions of Large Nuclei

Backup 000000 Tensor Network Formulation

Nabil Humphrey

CSSM, University of Adelaide

Novel Algorithms for Computing Correlation Functions of Large Nuclei

Definition: Abstract Factor Tree

Given a tensor expression sum $E = \sum_a c_a E_a$, a corresponding Abstract Factor Tree τ of depth *m* is a rooted tree on the vertex set of tensor elements together with a non-zero real number for each leaf such that each root-to-leaf path corresponds to a set of terms in the tensor expression sum. Moreover, the sum of all root-to-leaf paths is equal to the original tensor expression sum.

Novel Algorithms for Computing Correlation Functions of Large Nuclei

Nabil Humphrey

Backup 00000• Linearised Tree Evaluation

Algorithm 1: Linearised Factor Tree Evaluation

```
Input: tree{ factors, children, coeffs }
Output: sum := 0
Data: values
index := [ ]
position := [ tree \rightarrow factors[0] ]
cumulativeProd := [ values[ position[0] ] ]
leafldx := 0
while True do
     nextPos := position[-1] + 1
      if tree \rightarrow children[position[-1]] == 0 then
            sum += tree \rightarrow coeffs[leafIdx] \times cumulativeProd[-1]
            leafldx += 1
            success := false
            while ! index \rightarrow empty() do
                  index[-1] += 1
                  if index[-1] < tree \rightarrow children[position[-2]] then
                         success = true
                        position[-1] = nextPos
                        cumulativeProd[-1] = cumulativeProd[-2] \times values[tree \rightarrow factors[nextPos]]
                        break
                  else
                        position = position[:-1]
                        index = index[:-1]
                        cumulativeProd = cumulativeProd[:-1]
                        termValues = termValues[:-1]
            if ! success then
                  done
      else
            position.append( nextPos )
            index.append(0)
            cumulativeProd.append( cumulativeProd[-1] \times values[ tree \rightarrow factors[nextPos] ] )
                                                                                                  ヘロマ 不留 マイドマ キャン ひょう
```

Nabil Humphrey

Novel Algorithms for Computing Correlation Functions of Large Nuclei