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Introduction Factor Trees

Nuclear Structure Through Lattice QCD

• This work seeks to enable more detailed lattice probes into the
nuclear structure of (relatively) large nuclei
• Key Challenges:

1 Signal-to-Noise scaling: errors generally scale poorly with quark number
2 Identifying physically relevant states: achieving good overlap with the ground-state

becomes increasingly difficult for many-hadron systems
3 Numerical correlator evaluation:

• Wick contractions scale factorially in quark number
• Index set scales exponentially in quark number
• Floating point errors interact poorly with delicate cancellations

• Key Resources:
1 Discrete permutation symmetry within interpolating operators – both term-wise and

factor-wise
2 Common subexpressions
3 Highly iterated computational workflow: it’s worth putting in upfront resources to save

on compute overall
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Algorithm Anthology

• Hadron Blocks [e.g. Detmold, Orginos (2013) or Doi, Endres (2013)]
• Index Lists [Doi, Endres (2013)]

• For an expensive tensor Cpn
α′β′

(ξ′1, ..., ξ
′
6), pre-compute which subset of the index set

has non-vanishing contribution to the correlator

• Recursive Formulation [e.g. for mesons: Detmold, Savage (2010)]
• Determinant Formulation [Detmold, Orginos (2013)]

• Map fermion anti-symmetry onto matrix determinant anti-symmetry, then use LU
factorisation to attain O(n3) scaling rather than O(n!) scaling − only Wick
Contraction scaling, not index set scaling

• Tensor Expression Canonicalisation (using Vertex-Labelled Graph
Canonicalisation)
• Map the tensor network of a tensor expression to a vertex-labelled graph such that

graph isomorphism corresponds to tensor expression equivalence

• Factor Trees
• Tensor E-graphs

• Simultaneously explore all possible common tensor subexpressions and extract the set
that minimises a cost function
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Interpolating Operators

• Begin with standard baryon operators, e.g.:

pα = εabc(uTa (Cγ5)db)uαc
nα = εabc(uTa (Cγ5)db)dαc
pα± = εabc(uTa (Cγ5P±)db)uαc
nα± = εabc(uTa (Cγ5P±)db)dαc

• Construct candidate multi-baryon operators, e.g.:

Deuteron I: DI (x) = nT (x)(Cγ5)p(x)

Deuteron II: DII (x) =
1
√
2

[
nT (x)(Cγ5)p(x)− pT (x)(Cγ5)n(x)

]
Helium-3 I: 3HejI (x) = pT−(x)(Cγ5)n+(x)pj+(x)

Helium-3 II: 3HejII (x) =
1
√
6

[
pT−(x)(Cγ5)n+(x)pj+(x)− pT+ (x)(Cγ5)n+(x)pj−(x)

+nT+ (x)(Cγ5)p+(x)pj−(x)− nT+ (x)(Cγ5)p−(x)pj+(x)

+pT+ (x)(Cγ5)p−(x)nj+(x)− pT−(x)(Cγ5)p+(x)nj+(x)
]
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Computational Workflow

for each e.g. time slice t:
• Construct C(t) from e.g. proton: pα(x) = εabcuaσ(x)(Cγ5)σρdb

ρ(x)ucα(x)

C(t) =

〈∑
~x

pα(x)p
α′ (0)

〉
=
∑
~x

εabcεa′b′c′ (Cγ5)σρ(Cγ5)
σ′ρ′
〈
uaσ (x)dbρ(x)ucα(x)ua

′
σ′ (0)db

′
ρ′ (0)uc

′
α′ (0)
〉

=
∑
~x

εabcεa′b′c′ (Cγ5)σρ(Cγ5)
σ′ρ′
[
−Su;aa′
σσ′

(x)Su;cc′
αα′

(x) + Su;ac′
σα′

(x)Su;ca′
ασ′

(x)
]

Sd ;bb′
ρρ′

(x)

• Evaluate C(t) for the corresponding time slice of S f ;c1,c2
δ1,δ2

(x − x ′)
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Hadron Blocks

• Construct a tensor corresponding to
a set of quarks created at the source
and annihilated as a
momentum-projected hadron at the
sink
• Block expressions are re-used in the
course of evaluating the
multi-hadron correlator
• The factorial number of Wick
Contractions is suppressed by a
factor of 2A for A baryons

f Pα (x′, a′, β′, b′, γ′, c′, α′) :=

〈∑
~x′

pα(x′)ua
′
β′ (x)db

′
γ′ (x)uc

′
α′ (x)

〉
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Hadron Blocks Benchmark

• Hadron Blocks give a clear performance improvement even for light nuclei
• Hadron block cost dominates for the Deuteron, but remains constant∗ compared
to the exponentially growing correlator cost
• Benchmark Details: Measuring wall-clock time in milliseconds on a single core of
an Intel Xeon Scalable Cascade Lake processor; Lattice Volume 643; Linked to
Chroma for Propagator computation; Helium-4 Operator as in [Yamazaki (2010)]
∗Hadron Block cost differs between relativistic (e.g. Deuteron II) and
non-relativistic (e.g. Helium-4) forms.
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Multiplicity Histograms

• Take correlators εabc . . . Γαβ . . . f
P/N
α (. . . ) . . . : sum over all internal indices

a, b, c, . . . α, β, . . . , leaving strings of f P/Nα -like terms
• Sort, group, and assign multiplicities to identically equal terms
• The vast majority of terms have multiplicity > 1, with some terms having
multiplicity � 1
• Exploit this property by computing each degenerate term once and multiply by
the multiplicity-adjusted coefficient
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Factor Trees

• Storing the full set of terms carries an infeasible memory footprint
• We have the property that the set of factors (e.g. {f P/Nα }) is small compared to
the set of terms, so we can expect a high degree of factorisation

T (1)
122 T (2)

232 5

T (1)
123

T (2)
232 1

T (2)
323 −1

Abstract Factor Tree

←→ E = 5 T (1)
122T

(2)
232 + T (1)

123T
(2)
232 − T (1)

123T
(2)
323

= 5 T (1)
122T

(2)
232 + T (1)

123

(
T (2)
232 − T (2)

323

)
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Abstract Factor Trees → Linearised Factor Trees

• Abstract Factor Trees have each node pointing to it’s children nodes. This is
highly inefficient:
• For a saturated expression (term set dominates the factor set), the number of children

for each node is O(num factors) ⇒ the dominant storage cost is to store the links.
• Cache performance is terrible

• Linearised Factor Trees don’t store links: only the factors and the number of
children

T (1)
122 T (2)

232 5

T (1)
123

T (2)
232 1

T (2)
323 −1

Abstract Factor Tree

←→

factors =
[
◦, T (1)

122, T
(2)
232, T

(1)
123, T

(2)
232, T

(2)
323

]
children = [2, 1, 0, 2, 0, 0]

coefficients = [5, 1,−1]

Linearised Factor Tree
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Correlator Evaluation Benchmarks

Benchmark Details: Measuring wall-clock time in milliseconds on a single core of an
Intel Xeon Scalable Cascade Lake processor; Lattice Volume 643; Linked to Chroma
for Propagator computation
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Outlook

• Hadron blocks have excellent performance compared to a naive implementation
• Factor trees present promising performance improvements for correlators of light
nuclei
• The hadron block cost dominates the correlator cost for light nuclei, but beyond
about Helium-4 the correlator cost becomes the relevant cost to optimise
• There are memory constraints in scaling factor trees beyond light nuclei,
motivating a hybrid factor tree / tensor e-graph approach for larger systems
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Tensor E-graphs

E-graphs (Equivalence Graphs) [Willsey, et al. (2021)]: Perform all re-writes
simultaneously and extract the optimal re-write path as the argmin of some cost
function.

Re-writes

Given a tensor expression, split into two pieces, canonicalise, and then collect
common subexperssions.

(Cγ5)αβ(Cγ5)γδTαβTγδ → (Cγ5)αβTαβ × (Cγ5)γδTγδ
→ (Cγ5)αβTαβ × (Cγ5)αβTαβ
→ B2 where B = (Cγ5)αβTαβ
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Vertex-Labelled Graph Canonicalisation

Definition:Graph Canonicalisation Map

Given two graphs,

G1,G2 ∈ G(V ) := {labelled (simple) graphs with vertex set V with |V | =: n}

And given two ordered vertex colourings π1, π2 ∈ Π(V ) := {(V1, ...,Vr ) |
∪̇jVj = V} related by π2 = πγ1 for some γ ∈ Sn, then a Graph Canonicalisation
Map C : G(V )×Π(V )→ G(V ) satisfies C(G1, π1) = C(G2, π2) if and only if
∃δ ∈ Sn such that G2 = Gδ1 and π2 = πδ1 .

G1 =
0
1
2

3
4
5
, π1 = ({0, 1, 2}, {3, 4, 5})

G2 =
0
1
2

3
4
5
, π2 = ({3, 4, 5}, {0, 1, 2})

C(G1, π1) =
0
1
2

3
4
5

= C(G2, π2),
γ = (0 3)(1 4)(2 5) ∈ S6
δ = (0 4)(1 3)(2 5) ∈ S6
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Tensor Network Formulation
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Abstract Factor Trees

Definition:Abstract Factor Tree

Given a tensor expression sum E =
∑

a caEa, a corresponding Abstract Factor
Tree τ of depth m is a rooted tree on the vertex set of tensor elements together
with a non-zero real number for each leaf such that each root-to-leaf path
corresponds to a set of terms in the tensor expression sum. Moreover, the sum
of all root-to-leaf paths is equal to the original tensor expression sum.

τ =

T (1)
122 T (2)

232 5

T (1)
123

T (2)
232 1

T (2)
323 −1

←→ E = 5 T (1)
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Linearised Tree Evaluation

Algorithm 1: Linearised Factor Tree Evaluation
Input: tree{ factors, children, coeffs }
Output: sum := 0
Data: values
index := [ ]
position := [ tree→factors[0] ]
cumulativeProd := [ values[ position[0] ] ]
leafIdx := 0
while True do

nextPos := position[-1] + 1
if tree→children[ position[-1] ] == 0 then

sum += tree→coeffs[leafIdx] × cumulativeProd[-1]
leafIdx += 1
success := false
while ! index→empty() do

index[-1] += 1
if index[-1] < tree→children[ position[-2] ] then

success = true
position[-1] = nextPos
cumulativeProd[-1] = cumulativeProd[-2] × values[ tree→factors[nextPos] ]
break

else
position = position[:-1]
index = index[:-1]
cumulativeProd = cumulativeProd[:-1]
termValues = termValues[:-1]

if ! success then
done

else
position.append( nextPos )
index.append( 0 )
cumulativeProd.append( cumulativeProd[-1] × values[ tree→factors[nextPos] ] )
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