Lattice 2021 (MIT) July 29th, 2021

Gauge-Fixed Fourier Acceleration

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the US DOE's Office of Science and National Nuclear Security Administration.

Ahmed Sheta (speaker), Yidi Zhao, Norman Christ Columbia University

Overview

- Background and Motivation
- Preliminary Results with Periodic B.C.
- Current Results with Fixed B.C.

Background and Motivation

Motivation

- In the continuum limit $(a \to 0)$, high-energy modes $(\omega \propto \frac{1}{a})$ enter the simulation
- <u>**Problem:**</u> HMC Algorithm needs small step size for high-energy modes, needs many steps for low-energy, physical modes ... <u>Critical Slowing Down</u>
- <u>Upshot:</u> In the continuum limit, gauge fields enter the action quadratically

$$S_{wilson} = \frac{\beta}{3} \sum_{x,\mu < \nu} Re \ tr[1 - P_{\mu\nu}(x)]$$
$$\rightarrow^{U=e^{iA}} (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu})$$

Can apply **Fourier Acceleration** to eliminate Critical Slowing Down

• Fourier modes are mixed by gauge-symmetry. Need <u>gauge-fixing</u> to identify the modes

• Need <u>Faddeev-Popov term</u> to preserve gauge-invariant observables

$$H = \sum_{k} tr[P_{\mu}(-k)D^{\mu\nu}(k)P_{\nu}(k)] + S_{wilson}[U] + S_{GF}[U] + S_{FP}[U]$$

$$H = \sum_{k} tr[P_{\mu}(-k)D^{\mu\nu}(k)P_{\nu}(k)] + S_{wilson}[U] + S_{GF}[U] + S_{FP}[U]$$

$$S_{GF} = -\beta M^{2} \sum_{x,\mu} \operatorname{Re} tr[U_{\mu}(x)] \implies \operatorname{softly-fixed Landau gauge} [S. Fachin 1993]$$
$$S_{FP} = \ln \int dg \ e^{-S_{GF1}[U^{g}]} \implies \frac{\partial S_{FP}}{\partial U} = \frac{\int dg \ e^{-S_{GF}[U^{g}]} \frac{\partial S_{GF}[U^{g}]}{\partial U}}{\int dg \ e^{-S_{GF}[U^{g}]}} = <\frac{\partial S_{GF}[U^{g}]}{\partial U} >_{g}$$

"Inner Monte Carlo": we evaluate $\frac{\partial S_{FP}}{\partial U}$ stochastically using a Heatbath algorithm

$$<\frac{\partial S_{GF}[U^g]}{\partial U}>_g\approx\frac{1}{N}\sum_{i=1}^N\frac{\partial S_{GF}[U^{g_i}]}{\partial U}$$
3/16

Fourier Acceleration

$$H_p = \sum_k tr[P_\mu(-k) D^{\mu\nu} P_\nu(k)]$$

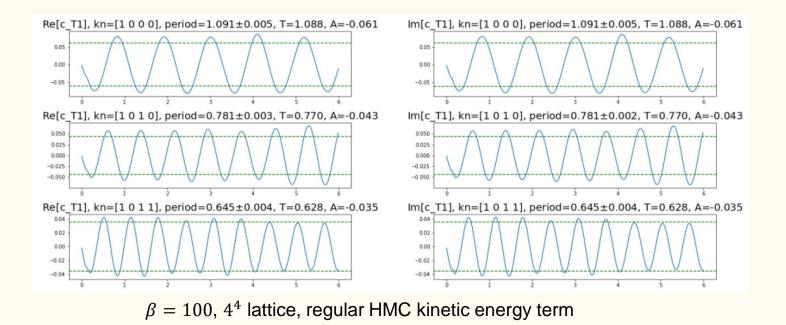
- To achieve Fourier acceleration, choose the coefficients of the conjugate momenta (the "mass term") as the inverse of coefficients of terms in the action quadratic in gauge-fields
- In the continuum limit, $D_{\mu\nu}$ up to first order is:

$$D_{\mu\nu}(k) = \frac{1}{k^2} P_{\mu\nu}^T + \frac{1}{M^2} P_{\mu\nu}^L$$
$$P_{\mu\nu}^T(k) = \delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}$$
$$P_{\mu\nu}^L(k) = \frac{k_{\mu}k_{\nu}}{k^2}$$

Preliminary Results with Periodic Boundary Conditions

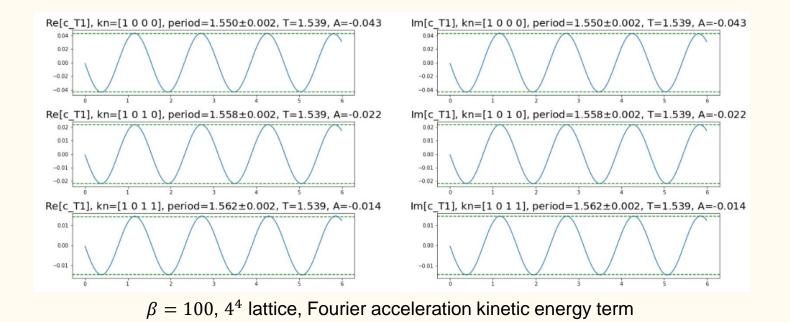
<u>Gauge-Modes ($A = \ln U$)</u>

- With gauge-fixing, perturbative gauge modes perform SHO motion with known frequencies
 - With <u>regular HMC kinetic</u> term, transverse modes have k-dependent frequencies: $\omega_k = \sqrt{\frac{\beta}{6}} k$



<u>Gauge-Modes ($A = \ln U$)</u>

- With gauge-fixing, perturbative gauge modes perform SHO motion with known frequencies
 - Fourier Acceleration kinetic term eliminates k-dependence of transverse mode frequencies: $\omega_k = \sqrt{\frac{\beta}{6}}$



Periodic Box Results

• $\beta = 10, 8^4$ lattice with periodic boundary conditions. Compare <u>integrated autocorrelation</u> <u>time</u> for the plaquette and Wilson flowed energy, flow time of 4

• HMC

	β	$ au_{traj}$	steps	trajs	plaq	plaq τ_{int}	$E(4) \tau_{int}$	Accpt
Γ	10	0.6	24	10030	0.783295(37)	4.51(82)	20.9(5.4)	75%
Γ	10	1.0	50	10030	0.783289(26)	3.41(30)	19.0(4.4)	77.6%
	10	4.0	200	8533	0.783363(27)	10.73(61)	13.0(1.4)	78%

• GFFA

β	τ_{traj}	steps	trajs	plaq	plaq τ_{int}	$E(4) \tau_{int}$	М	MC
10	0.6	24	1911	0.783347(45)	1.26(25)	3.6(1.0)	3.0	200
10	1.0	30	5176	0.783207(16)	0.653(31)	18.6(8.3)	3.0	40
10	0.6	24	3915	0.783404(28)	1.059(81)	5.4(1.3)	5.0	200

Periodic Box Results

• $\beta = 10, 8^4$ lattice with periodic boundary conditions. Compare <u>integrated autocorrelation</u> <u>time</u> for the plaquette and Wilson flowed energy, flow time of 4

• HMC

β	$ au_{traj}$	steps	trajs	plaq	plaq τ_{int}	$E(4) \tau_{int}$	Accpt
10	0.6	24	10030	0.783295(37)	4.51(82)	20.9(5.4)	75%
10	1.0	50	10030	0.783289(26)	3.41(30)	19.0(4.4)	77.6%
10	4.0	200	8533	0.783363(27)	10.73(61)	13.0(1.4)	78%

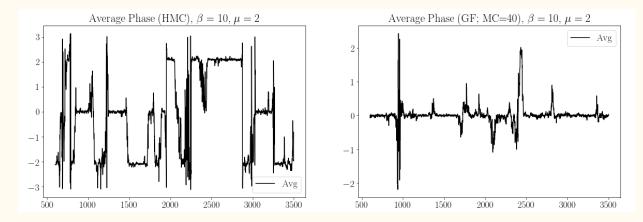
• GFFA

Γ	β	τ_{traj}	steps	trajs	plaq	plaq τ_{int}	$E(4) \tau_{int}$	M	MC
	10	0.6	24	1911	0.783347(45)	1.26(25)	3.6(1.0)	3.0	200
	10	1.0	30	5176	0.783207(16)	0.653(31)	18.6(8.3)	3.0	40
Γ	10	0.6	24	3915	0.783404(28)	1.059(81)	5.4(1.3)	5.0	200

<u>GFFA achieves $\approx 5x$ factor acceleration</u>

Polyakov Phases and Z₃ Symmetry

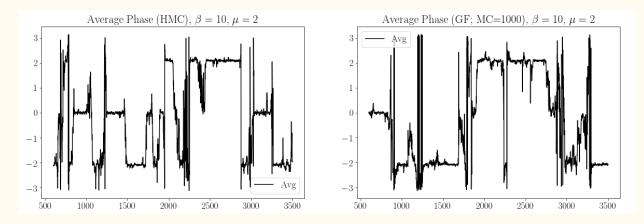
- Recall: $P_{\mu} \rightarrow e^{2\pi i/3} P_{\mu}$ is symmetry of action ... Z_3 symmetry
- Evolution (HMC vs GF; <u>Inner MC sweeps= 40</u>):



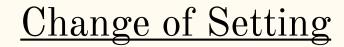
• Gauge-fixed evolution doesn't respect the Z_3 symmetry?

Polyakov Phases and Z₃ Symmetry

- Recall: $P_{\mu} \rightarrow e^{2\pi i/3} P_{\mu}$ is symmetry of action ... Z_3 symmetry
- Evolution (HMC vs GF; <u>Inner MC sweeps= 1000</u>):



- Gauge-fixed evolution doesn't respect the Z_3 symmetry?
 - Monte Carlo estimate of S_{FP} may fail to adequately compensate lack of Z_3 symmetry in S_{GF}



• 1000 Inner MC sweeps are impractical

• Relevance of Polyakov phase?

- Ultimately want to work with fixed boundary conditions
 - <u>Upshot</u>: Eliminate Z_3 symmetry

Fixed Boundaries and Current Results

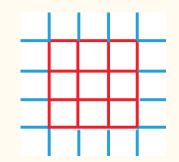
Looking Forward

- Ultimate goal: apply Fourier Acceleration to physically relevant, nonperturbatively large volumes
- Fourier acceleration requires:
 - Free modes ... Continuum limit $(a \rightarrow 0)$
 - Perturbative gauge ... Small volume $(L \ll \frac{1}{\Lambda_{QCD}})$

• Divide large volume into smaller perturbative sub-volumes; and apply Fourier Acceleration independently in each sub-volume

Setup & Evolution Scheme

- Evolve one of the cells
 - Lattice with fixed boundary conditions

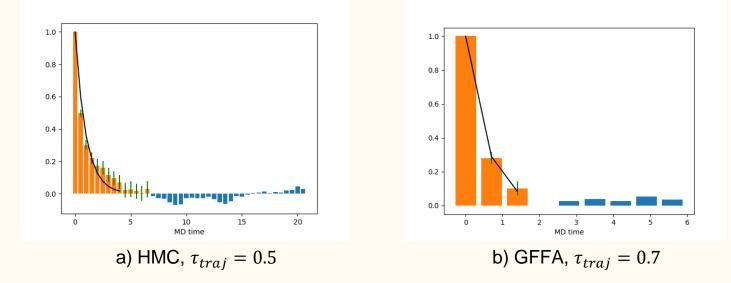


- Setup:
 - 1- Entire Lattice equilibriated using Wilson action
 - 2- Sample g(x) according to $\exp\{-S_{GF}[U^g \in B] S_{FP}[U^g \in B]\}$ and apply it to lattice. This fixes Landau gauge in the cell and "squeezes" any nonperturbative effects into the <u>fixed</u> <u>boundary links</u>
- Evolve the <u>cell</u> according to

 $H = \sum_{k} tr[P_{\mu}(-k)D^{\mu\nu}(k)P_{\nu}(k)] + S_{wilson}[U] + S_{GF}[U \in B] + S_{FP}[U \in B]$

<u>Current Results ($\beta = 10$)</u>

• Comparison of plaquette autocorrelation function on the 10^4 cell inside 12^4 lattice



- Observable of interest: autocorrelation time τ_{exp}
- Fit autocorrelation function to exponential $f(t) = e^{-t/\tau_{exp}}$

<u>Current Results ($\beta = 10$)</u>

• 6^4 cell inside 8^4 lattice:

HMC

β	$ au_{traj}$	steps	trajs	plaq	plaq τ_{exp}	Accpt
10	0.5	48	9431	0.783318(56)	0.810(45)	97.2%
10	1.0	96	8481	0.783313(11)	1.540(87)	96.6%

•	GFFA	β	$ au_{traj}$	steps	trajs	plaq	plaq τ_{exp}	Μ	MC
		10	0.7	48	1518	0.783104(16)	0.579(67)	3.0	200

• 10⁴ cell inside 12⁴ lattice:

HMC	β	τ_{traj}	steps	trajs	plaq	plaq τ_{exp}	Accpt
	10	0.5	48	2011	0.783395(13)	0.97(14)	93.3%
	10	1.0	96	1807	0.783415(14)	1.97(30)	91.5%

• GFFA

β	$ au_{traj}$	steps	trajs	plaq	plaq τ_{exp}	М	MC
10	0.7	60	1009	0.783001(12)	0.565(60)	5.0	200

Conclusion

• 6^4 cell inside 8^4 lattice:

HMC

β	$ au_{traj}$	steps	trajs	plaq	plaq τ_{exp}	Accpt
10	0.5	48	9431	0.783318(56)	0.810(45)	97.2%
10	1.0	96	8481	0.783313(11)	1.540(87)	96.6%

•	GFFA	β	$ au_{traj}$	steps	trajs	plaq	plaq τ_{exp}	Μ	MC
		10	0.7	48	1518	0.783104(16)	0.579(67)	3.0	200

• 10^4 cell inside 12^4 lattice:

HMC	β	τ_{traj}	steps	trajs	plaq	plaq τ_{exp}	Accpt
	10	0.5	48	2011	0.783395(13)	0.97(14)	93.3%
	10	1.0	96	1807	0.783415(14)	1.97(30)	91.5%

• GFFA

β	τ_{traj}	steps	trajs	plaq	plaq τ_{exp}	М	MC
10	0.7	60	1009	0.783001(12)	0.565(60)	5.0	200

<u>GFFA achieves</u> $\approx 2x$ factor acceleration ... expect more on larger volumes

Thank You!