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Why Quantum Simulation?

*[Yamazaki et. al (2010) PhysRevD.81.111504]

I Using fundamental models to calculate physics at longer
length scales is hard.

I Access different physics (real-time dynamics)
I Classical methods have been very successful, but hit

roadblocks. (exponential resource scalings, sign problems)
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Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator

2. Prepare an initial state |ψ0〉
3. Compute the time-evolved state e−iHt/~ |ψ0〉.
4. Measure in the basis of some observable O.

5. Repeat to estimate 〈O〉.
How hard is this to do on a quantum computer? Depends on the
computational model.

Cheap Expensive

Near-term (NISQ) Single-qubit Entangling gates
rotations (CNOT)

Far-term Clifford T-gates
(Fault-Tolerant) + CNOT gates
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QCD is too hard to start with.

The Lattice Schwinger Model*

odd sites - electrons
even sites - positrons =⇒

continuum limit
QED in (1+1)D

link sites - electric field

Simplest model that replicates features of QCD (confinement,
spontaneous breaking of chiral symmetry).

*[Kogut, Susskind (1975) 10.1103/PhysRevD.11.395]
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Computing time evolution

The Lattice Schwinger Model

Computational basis = occupation basis.

EX: for a fermion on an
odd site (after Jordan-Wigner):

computational basis occupation basis

|0〉 presence of electron
|1〉 vacuum

The value of the electric field is represented as a binary integer in a
qubit register, one for each link.
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Computing time evolution
Decompose the Schwinger Model Hamiltonian

HSchwinger =
∑
r

Ê 2
r + µ

∑
r

(−)r ψ̂†r ψ̂r + x
∑
r

[
Ûr ψ̂

†
r ψ̂r+1 − Û†r ψ̂r ψ̂

†
r+1

]
= HE-field + Hmass︸ ︷︷ ︸

diagonal in computational basis

+ Hinteraction︸ ︷︷ ︸
linear combination of

tensor product of pauli matrices

=
m∑
j=1

Hj ← Simulatable!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vtrotter step(t) :=
m∏
j=1

e−iHj t/2
1∏

j=m

e−iHj t/2

∥∥e−iHSchwingert − Vtrotter step(t)
∥∥ ≤ 1

12

∑
x,y>x,z>x

‖[[Hx ,Hy ],Hz ]‖t3

+
1

24

∑
x,y>x

‖[[Hx ,Hy ],Hx ]‖t3 =̇ δ(lattice parameters, evolution time).

Error bound from [Childs et al. (2021) 10.1103/PhysRevX.11.011020]
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What’s in the Paper:

I Decomposition of HSchwinger =
∑

j Hj

I Circuits to implement each e−iHj t in both the near-term
(NISQ) and far-term settings.

I Calculate
δ(lattice parameters) ≥

∥∥e−iHSchwingert − Vtrotter step(t)
∥∥

I Upper bound on sufficient quantum-computational resources
required for an arbitrary simulation:

COST(total evolution time, error in final state, lattice parameters)

∈ Õ

(
N3/2T 3/2Λx1/2

δ1/2

)
where N = lattice size, T = evolution time, Λ = E-field cutoff,

and x = 1/(ag)2 (a lattice spacing, g coupling constant)

7 / 10



What’s in the Paper:

I Decomposition of HSchwinger =
∑

j Hj

I Circuits to implement each e−iHj t in both the near-term
(NISQ) and far-term settings.

I Calculate
δ(lattice parameters) ≥

∥∥e−iHSchwingert − Vtrotter step(t)
∥∥

I Upper bound on sufficient quantum-computational resources
required for an arbitrary simulation:

COST(total evolution time, error in final state, lattice parameters)

∈ Õ
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Data and Conclusion (Room for Improvement)

We compile these results further with estimation of mean
positron/electron density :

Near-term (NISQ) Simulation (no ancilla)
δg = 10−3 δg = 10−4 δg = 10−5 δg = 10−6 δg = 10−7

ε̃2 CNOT ε̃2 CNOT ε̃2 CNOT ε̃2 CNOT ε̃2 CNOT
x = 10−2 — 7.3e4 — 1.6e5 — 3.4e5 — 7.3e5 5.6e-2 1.6e6
x = 10−1 — 1.6e4 — 3.5e4 — 7.5e4 5.9e-2 1.6e5 2.7e-3 3.5e5
x = 1 — 4.6e3 — 9.9e3 1.0e-1 2.1e4 4.7e-3 4.6e4 2.2e-4 9.9e4
x = 102 — 2.8e3 8.3e-1 6.1e3 3.8e-2 1.3e4 1.8e-3 2.8e4 8.2e-5 6.0e4

x = (ag)−2 with a lattice spacing and g coupling constant
δg = error in CNOT channel
ε̃2 = worst case mean square error in mean positron density
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Data and Conclusion (Room for Improvement)

Far-term Simulation (N is size of lattice, Λ is electric cutoff)
Upper Bounds on T-gate Cost of Specific Simulations (µ = 1, ε̃2 = 0.1)

Short Time (T = 10/x) Long Time (T = 1000/x)
Sampling Estimating Sampling Estimating

N = 4, Λ = 2
Strong Coupling (x = 0.1) 6.5 · 107 2.4 · 1011 8.8 · 1010 3.3 · 1014

Weak Coupling (x = 10) 5.0 · 106 1.8 · 1010 7.0 · 109 2.6 · 1013

N = 16, Λ = 2
Strong Coupling (x = 0.1) 7.2 · 108 2.5 · 1012 9.4 · 1011 3.3 · 1015

Weak Coupling (x = 10) 5.6 · 107 1.9 · 1011 7.6 · 1010 2.7 · 1014

N = 16, Λ = 4
Strong Coupling (x = 0.1) 1.9 · 109 6.3 · 1012 2.3 · 1012 8.1 · 1015

Weak Coupling (x = 10) 9.6 · 107 3.2 · 1011 1.2 · 1011 4.2 · 1014

N = 64, Λ = 2
Strong Coupling (x = 0.1) 6.6 · 109 2.1 · 1013 8.5 · 1012 2.9 · 1016

Weak Coupling (x = 10) 5.2 · 108 1.6 · 1012 6.9 · 1011 2.3 · 1015

N = 64, Λ = 4
Strong Coupling (x = 0.1) 1.7 · 1010 5.4 · 1013 2.0 · 1013 6.9 · 1016

Weak Coupling (x = 10) 8.7 · 108 2.7 · 1012 1.1 · 1012 3.6 · 1015

N = 64, Λ = 8
Strong Coupling (x = 0.1) 4.5 · 1010 1.5 · 1014 5.3 · 1013 1.8 · 1017

Weak Coupling (x = 10) 1.5 · 109 4.6 · 1012 1.7 · 1012 5.8 · 1015
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Questions on the Road to Quantum Simulating QCD:

I Can our algorithms generalize to higher dimensions and
SU(N)?

I How do other algorithms (LCU, Qubitization) compare?

I Could other formulations of the model be beneficial? (SU(2) -
Quantum Link Model, Loop-String-Hadron)

I How can we best realize gauge invariance during simulation?

Our work is a benchmark to aid in answering these questions.

LCU - [Childs, Wiebe (2012) 10.26421/QIC12.11-12]
Qubitization - [Low, Chuang (2019) 10.22331/q-2019-07-12-163]
Quantum Link Model - [Chandrasekharan, Wiese (1996) 10.1016/S0550-3213(97)80041-7]
Loop-String-Hadron - [Raychowdhury, Stryker (2019) 10.1103/PhysRevD.101.114502]
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Preliminary Results - SU(2):

Using abelian gauge invariant hopping decomposition* - Discussed
in J. Stryker’s talk this evening, 10:45pm EST:

T
(

1
a2g2 ,Λ,

2m
g2a
,N,T

)
= Trotter Steps to reach error 10−3.

*[J. Stryker (2021) arXiv:2105.11548]
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Using amplitude estimation to estimate 〈Ô〉

|0〉0 H • • H

|0〉1 H • H

...
· · ·

|0〉m−1 H • H

|0〉 Uψ U0 U1 U2m−1 U†ψ

If Ô =
∑2m−1

a=0 Ûa, Ûa unitary, then above circuit ends up in:

Prob(measure |00...0〉) = C 〈Ô〉, C known constant.
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