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Why Quantum Simulation?

we en 9;"“Ajai2r #
e\wwr\*\'ﬁ ook Pe neiple ‘o

" Periodic Table of the Elements

"1

*[Yamazaki et. al (2010) PhysRevD.81.111504]

» Using fundamental models to calculate physics at longer
length scales is hard.
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» Using fundamental models to calculate physics at longer
length scales is hard.

» Access different physics (real-time dynamics)

» Classical methods have been very successful, but hit

roadblocks. (exponential resource scalings, sign problems)
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3/10



Goal: Estimate Observables from QCD

How to, using real-time dynamics:

3/10



Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator

3/10



Goal: Estimate Observables from QCD

How to, using real-time dynamics:
1. Map states of your theory to states of the simulator

2. Prepare an initial state |t)

3/10



Goal: Estimate Observables from QCD

How to, using real-time dynamics:
1. Map states of your theory to states of the simulator
2. Prepare an initial state |t)
3. Compute the time-evolved state et/ |4)x).

3/10



Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1.

Map states of your theory to states of the simulator

2. Prepare an initial state |t)
3.
4. Measure in the basis of some observable O.

Compute the time-evolved state e~ Ht/M |y)).

3/10



Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1.

AR

Map states of your theory to states of the simulator
Prepare an initial state |¢g)

Compute the time-evolved state e~ /7 |4)p).
Measure in the basis of some observable O.

Repeat to estimate (O).

3/10



Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1.
2.
3.
4,
5.
How hard is this to do on a quantum computer? Depends on the

Map states of your theory to states of the simulator
Prepare an initial state |¢g)

Compute the time-evolved state e~ /7 |4)p).
Measure in the basis of some observable O.

Repeat to estimate (O).

computational model.

3/10



Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator

2. Prepare an initial state |¢g)
3. Compute the time-evolved state et/ |4)x).
4. Measure in the basis of some observable O.

5. Repeat to estimate (O).

How hard is this to do on a quantum computer? Depends on the
computational model.

H Cheap \ Expensive

Near-term (NISQ) Single-qubit | Entangling gates
rotations (CNOT)
Far-term Clifford T-gates

(Fault-Tolerant)

+ CNOT gates
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QCD is too hard to start with.
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The Lattice Schwinger Model*

odd sites - electrons
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QCD is too hard to start with.

The Lattice Schwinger Model*

odd sites - electrons
even sites - positrons = QED in (1+1)D

) ) . ) continuum limit
link sites - electric field

Simplest model that replicates features of QCD (confinement,
spontaneous breaking of chiral symmetry).

*[Kogut, Susskind (1975) 10.1103/PhysRevD.11.395]
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Computing time evolution

The Lattice Schwinger Model

Computational basis = occupation basis.

5/10



Computing time evolution

The Lattice Schwinger Model

Computational basis = occupation basis. EX: for a fermion on an
odd site (after Jordan-Wigner):

computational basis ‘ occupation basis
|0) presence of electron
|1) vacuum

5/10



Computing time evolution

The Lattice Schwinger Model

Computational basis = occupation basis. EX: for a fermion on an
odd site (after Jordan-Wigner):

computational basis ‘ occupation basis
|0) presence of electron
|1) vacuum

The value of the electric field is represented as a binary integer in a

qubit register, one for each link.
5/10



Computing time evolution
Decompose the Schwinger Model Hamiltonian

HSchwinger = Z E,~2 + w Z(—)rwiwr + x Z {Urﬁl’i@/)r+1 - Uj@ﬂ/):+1
r r r

HE—field + Hmass + Hinteraction
—_—— ———

diagonal in computational basis linear combination of
tensor product of pauli matrices

:ZHJ < Simulatable!
j=1
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Computing time evolution
Decompose the Schwinger Model Hamiltonian

HSchwinger = Z E,~2 + w Z(—)rwiwr + x Z {U,I'I’U,+1 - Uj@’rw,TJrl
r r r

HE—fieId + Hmass + Hinteraction
—_—— ———

diagonal in computational basis linear combination of
tensor product of pauli matrices

:ZHJ < Simulatable!
j=1

m 1
R —iH;t/2 —iH;jt/2
Vtrotter step(t) Ll He ok / H € o /
j=m

Jj=1

M 1
He lHSchwmgert _ \/trottel’ StEP(t)H S E Z H[[HX7 Hy]’ Hz] || t3
X,y >X,Z>X
1 3 . . L
toz Z I[[Hx, Hy], Hx]||t® = &(lattice parameters, evolution time).
X,y >x
Error bound from [Childs et al. (2021) 10.1103/PhysRevX.11.011020]
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What's in the Paper:

» Decomposition of Hschwinger = Zj H;

» Circuits to implement each e~ it in both the near-term

(NISQ) and far-term settings.

» Calculate
d(lattice parameters) > He"HSchwinge't — Virotter step(t)H

» Upper bound on sufficient quantum-computational resources
required for an arbitrary simulation:

COST (total evolution time, error in final state, lattice parameters)

_ N3/2T3/2/\X1/2
ceO0| ———
51/2

where N = lattice size, T = evolution time, A = E-field cutoff,
and x = 1/(ag)? (a lattice spacing, g coupling constant)
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Data and Conclusion (Room for Improvement)

We compile these results further with estimation of mean
positron/electron density :

Near-term (NISQ) Simulation (no ancilla)

=107

g d,=10"1 5y =107 0, =105 5y =1077
& | CNOT & CNOT & CNOT & CNOT & CNOT
r=10"2 7.3e4 1.6e5 — 3.4eb 7.3e5 | 5.6e-2 | 1.6e6
z=10"" 1.6e4 3.5e4 — 7.5e4 | 5.9e-2 | 1.6eb | 2.7e-3 | 3.5ed
z=1 4.6e3 9.9e3 1.0e-1 2.1led | 4.7e-3 | 4.6ed | 2.2e-4 | 9.9¢4
x =102 2.8¢3 | 8.3e-1 | 6.1e3 | 3.8¢-2 | 1.3e4 | 1.8¢-3 | 2.8e4 | 8.2e-5 | 6.0ed

x = (ag)~2 with a lattice spacing and g coupling constant
0g = error in CNOT channel

~2

€= = worst case mean square error in mean positron density
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Data and Conclusion (Room for Improvement)

Far-term Simulation (N is size of lattice, A is electric cutoff)

Upper Bounds on T-gate Cost of Specific Simulations (u =1, &= 0.1)

Short Time (T = 10/xz)

Long Time (T = 1000/xz)

‘ Sampling ‘ Estimating ‘ Sampling ‘ Estimating

N=4, A=2

Strong Coupling (z = 0.1) 6.5- 107 2.4-1011 8.8 1010 3.3-10™

Weak Coupling (z = 10) 5.0- 106 1.8-101 7.0-10° 2.6-10
N =16, A=2

Strong Coupling (z = 0.1) 2108 2.5- 1012 9.4-10M 3.3-101°

Weak Coupling (z = 10) .6-107 1.9-10" 7.6-10° 2.7-10™
N =16, A=4

Strong Coupling (z = 0.1) 1.9-10° 6.3- 1012 2.3-1012 8.1-10°

Weak Coupling (z = 10) 9.6-107 3.2-10'" 1.2- 101 4.2-10"
N=64, A=2

Strong Coupling (z = 0.1) 6.6 - 10° 2.1-108 8.5-1012 2.9-10™

Weak Coupling (z = 10) 5.2-10% 1.6 - 1012 6.9-10'" 2.3-10'°
N=64, A=4

Strong Coupling (z = 0.1) 1.7-101 5.4-108 2.0-108 6.9 - 1016

Weak Coupling (z = 10) 8.7-108 2.7-1012 1.1-10%2 3.6-10'°
N=64, A=8

Strong Coupling (z = 0.1) 4.5-10™ 1.5-10M 5.3- 101 1.8-10%

Weak Coupling (z = 10) 1.5-10° 4.6-1012 1.7-10'2 5.8-10°
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Questions on the Road to Quantum Simulating QCD:

» Can our algorithms generalize to higher dimensions and
SU(N)?
» How do other algorithms (LCU, Qubitization) compare?

» Could other formulations of the model be beneficial? (SU(2) -
Quantum Link Model, Loop-String-Hadron)

» How can we best realize gauge invariance during simulation?

Our work is a benchmark to aid in answering these questions.

LCU - [Childs, Wiebe (2012) 10.26421/QIC12.11-12]

Qubitization - [Low, Chuang (2019) 10.22331/g-2019-07-12-163]

Quantum Link Model - [Chandrasekharan, Wiese (1996) 10.1016,/S0550-3213(97)80041-7]
Loop-String-Hadron - [Raychowdhury, Stryker (2019) 10.1103/PhysRevD.101.114502]
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Preliminary Results - SU(2):

Using abelian gauge invariant hopping decomposition* - Discussed
in J. Stryker's talk this evening, 10:45pm EST:

(a2 ——, N\, ;’Z, N, T) Trotter Steps to reach error 1073,
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Preliminary Results - SU(2):

Using abelian gauge invariant hopping decomposition*
in J. Stryker's talk this evening, 10:45pm EST:

- Discussed

( - N\, 20N, T) = Trotter Steps to reach error 1073,

' g2a’
T(y,y. 1.y, 1/y) Trotter Steps
10’3 L
104 L
— U1
““““““““““““““““““ Su2
1000 |
100 |
. . . Ly
10 100 1000 104

*[J. Stryker (2021) arXiv:2105.11548]
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Using amplitude estimation to estimate (O)

If O = Zglgl 0., 0, unitary, then above circuit ends up in:

Prob(measure [00...0)) = C(0), C known constant.
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