Lattice July 2021

Quantum Algorithms for Simulating the Lattice Schwinger Model

Alexander F. Shaw
University of Maryland - College Park
Based on work of same title in Quantum 4, 306 (2020) by AF Shaw, P Lougovski, JR Stryker and N Wiebe

Why Quantum Simulation?

- Using fundamental models to calculate physics at longer length scales is hard.

Why Quantum Simulation?
Elements we can simulate from

What wed like to simulate
${ }^{*}$ [Yamazaki et. al (2010) PhysRevD.81.111504]

- Using fundamental models to calculate physics at longer length scales is hard.
- Access different physics (real-time dynamics)

Why Quantum Simulation?
Elements we can simulate from

What wed like to simulate
${ }_{{ }_{[} \text {[Yamazaki et. al (2010) PhysRevD.81.111504] }}$

- Using fundamental models to calculate physics at longer length scales is hard.
- Access different physics (real-time dynamics)
- Classical methods have been very successful, but hit roadblocks. (exponential resource scalings, sign problems)

Goal: Estimate Observables from QCD

Goal: Estimate Observables from QCD

How to, using real-time dynamics:

Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator

Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator
2. Prepare an initial state $\left|\psi_{0}\right\rangle$

Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator
2. Prepare an initial state $\left|\psi_{0}\right\rangle$
3. Compute the time-evolved state $e^{-i H t / \hbar}\left|\psi_{0}\right\rangle$.

Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator
2. Prepare an initial state $\left|\psi_{0}\right\rangle$
3. Compute the time-evolved state $e^{-i H t / \hbar}\left|\psi_{0}\right\rangle$.
4. Measure in the basis of some observable O.

Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator
2. Prepare an initial state $\left|\psi_{0}\right\rangle$
3. Compute the time-evolved state $e^{-i H t / \hbar}\left|\psi_{0}\right\rangle$.
4. Measure in the basis of some observable O.
5. Repeat to estimate $\langle O\rangle$.

Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator
2. Prepare an initial state $\left|\psi_{0}\right\rangle$
3. Compute the time-evolved state $e^{-i H t / \hbar}\left|\psi_{0}\right\rangle$.
4. Measure in the basis of some observable O.
5. Repeat to estimate $\langle O\rangle$.

How hard is this to do on a quantum computer? Depends on the computational model.

Goal: Estimate Observables from QCD

How to, using real-time dynamics:

1. Map states of your theory to states of the simulator
2. Prepare an initial state $\left|\psi_{0}\right\rangle$
3. Compute the time-evolved state $e^{-i H t / \hbar}\left|\psi_{0}\right\rangle$.
4. Measure in the basis of some observable O.
5. Repeat to estimate $\langle O\rangle$.

How hard is this to do on a quantum computer? Depends on the computational model.

	Cheap	Expensive
Near-term (NISQ)	Single-qubit rotations	Entangling gates (CNOT)
Far-term (Fault-Tolerant)	Clifford + CNOT gates	T-gates

QCD is too hard to start with.

QCD is too hard to start with.

The Lattice Schwinger Model*

odd sites - electrons
even sites - positrons
link sites - electric field

QCD is too hard to start with.

The Lattice Schwinger Model*

odd sites - electrons
even sites - positrons
link sites - electric field
continuum limit
QED in $(1+1) D$

Simplest model that replicates features of QCD (confinement, spontaneous breaking of chiral symmetry).
*[Kogut, Susskind (1975) 10.1103/PhysRevD.11.395]

Computing time evolution

The Lattice Schwinger Model

Computational basis $=$ occupation basis.

Computing time evolution

The Lattice Schwinger Model

Computational basis $=$ occupation basis. EX: for a fermion on an odd site (after Jordan-Wigner):

computational basis	occupation basis
$\|0\rangle$	presence of electron
$\|1\rangle$	vacuum

Computing time evolution

The Lattice Schwinger Model

Computational basis $=$ occupation basis. EX: for a fermion on an odd site (after Jordan-Wigner):

computational basis	occupation basis
$\|0\rangle$	presence of electron
$\|1\rangle$	vacuum

The value of the electric field is represented as a binary integer in a qubit register, one for each link.

Computing time evolution

Decompose the Schwinger Model Hamiltonian

$$
\begin{aligned}
H_{\text {Schwinger }} & =\sum_{r} \hat{E}_{r}^{2}+\mu \sum_{r}(-)^{r} \hat{\psi}_{r}^{\dagger} \hat{\psi}_{r}+x \sum_{r}\left[\hat{U}_{r} \hat{\psi}_{r}^{\dagger} \hat{\psi}_{r+1}-\hat{U}_{r}^{\dagger} \hat{\psi}_{r} \hat{\psi}_{r+1}^{\dagger}\right] \\
& =\underbrace{H_{\mathrm{E}-\text { field }}+H_{\text {mass }}}_{\text {diagonal in computational basis }}+\underbrace{H_{\text {interaction }}}_{\substack{\text { linear combination of } \\
\text { tensor product of pauli matrices }}} \\
& =\sum_{j=1}^{m} H_{j} \leftarrow \quad \text { Simulatable! }
\end{aligned}
$$

Computing time evolution

Decompose the Schwinger Model Hamiltonian

$$
\begin{aligned}
H_{\text {Schwinger }} & =\sum_{r} \hat{E}_{r}^{2}+\mu \sum_{r}(-)^{r} \hat{\psi}_{r}^{\dagger} \hat{\psi}_{r}+x \sum_{r}\left[\hat{U}_{r} \hat{\psi}_{r}^{\dagger} \hat{\psi}_{r+1}-\hat{U}_{r}^{\dagger} \hat{\psi}_{r} \hat{\psi}_{r+1}^{\dagger}\right] \\
& =\underbrace{H_{\mathrm{E}-\text { field }}+H_{\text {mass }}}_{\text {diagonal in computational basis }}+\underbrace{H_{\text {interaction }}}_{\substack{\text { linear combination of } \\
\text { tensor product of pauli matrices }}} \\
& =\sum_{j=1}^{m} H_{j} \leftarrow \text { Simulatable! }
\end{aligned}
$$

$$
V_{\text {trotter step }}(t):=\prod_{j=1}^{m} e^{-i H_{j} t / 2} \prod_{j=m}^{1} e^{-i H_{j} t / 2}
$$

$$
\left\|e^{-i H_{\text {schwinger }} t}-V_{\text {trotter step }}(t)\right\| \leq \frac{1}{12} \sum_{x, y>x, z>x}\left\|\left[\left[H_{x}, H_{y}\right], H_{z}\right]\right\| t^{3}
$$

$$
+\frac{1}{24} \sum_{x, y>x}\left\|\left[\left[H_{x}, H_{y}\right], H_{x}\right]\right\| t^{3} \doteq \delta(\text { lattice parameters, evolution time })
$$

What's in the Paper:

- Decomposition of $H_{\text {Schwinger }}=\sum_{j} H_{j}$

What's in the Paper:

- Decomposition of $H_{\text {Schwinger }}=\sum_{j} H_{j}$
- Circuits to implement each $e^{-i H_{j} t}$ in both the near-term (NISQ) and far-term settings.

What's in the Paper:

- Decomposition of $H_{\text {Schwinger }}=\sum_{j} H_{j}$
- Circuits to implement each $e^{-i H_{j} t}$ in both the near-term (NISQ) and far-term settings.
- Calculate
$\delta($ lattice parameters $) \geq\left\|e^{-i H_{\text {schwinger }} t}-V_{\text {trotter step }}(t)\right\|$

What's in the Paper:

- Decomposition of $H_{\text {Schwinger }}=\sum_{j} H_{j}$
- Circuits to implement each $e^{-i H_{j} t}$ in both the near-term (NISQ) and far-term settings.
- Calculate δ (lattice parameters) $\geq\left\|e^{-i H_{\text {schwinger }} t}-V_{\text {trotter step }}(t)\right\|$
- Upper bound on sufficient quantum-computational resources required for an arbitrary simulation:

What's in the Paper:

- Decomposition of $H_{\text {Schwinger }}=\sum_{j} H_{j}$
- Circuits to implement each $e^{-i H_{j} t}$ in both the near-term (NISQ) and far-term settings.
- Calculate $\delta($ lattice parameters $) \geq\left\|e^{-i H_{\text {schwinger }} t}-V_{\text {trotter step }}(t)\right\|$
- Upper bound on sufficient quantum-computational resources required for an arbitrary simulation:

COST(total evolution time, error in final state, lattice parameters)

$$
\in \widetilde{O}\left(\frac{N^{3 / 2} T^{3 / 2} \Lambda x^{1 / 2}}{\delta^{1 / 2}}\right)
$$

where $N=$ lattice size, $T=$ evolution time, $\Lambda=\mathrm{E}$-field cutoff, and $x=1 /(a g)^{2}$ (a lattice spacing, g coupling constant)

Data and Conclusion (Room for Improvement)

We compile these results further with estimation of mean positron/electron density :

Near-term (NISQ) Simulation (no ancilla)

| | $\delta_{g}=10^{-3}$ | | $\delta_{g}=10^{-4}$ | | $\delta_{g}=10^{-5}$ | | $\delta_{g}=10^{-6}$ | | $\delta_{g}=10^{-7}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\tilde{\epsilon}^{2}$ | CNOT |
| $x=10^{-2}$ | - | 7.3 e 4 | - | 1.6 e 5 | - | 3.4 e 5 | - | 7.3 e 5 | $5.6 \mathrm{e}-2$ | 1.6 e 6 |
| $x=10^{-1}$ | - | 1.6 e 4 | - | 3.5 e 4 | - | 7.5 e 4 | $5.9 \mathrm{e}-2$ | 1.6 e 5 | $2.7 \mathrm{e}-3$ | 3.5 e 5 |
| $x=1$ | - | 4.6 e 3 | - | 9.9 e 3 | $1.0 \mathrm{e}-1$ | 2.1 e 4 | $4.7 \mathrm{e}-3$ | 4.6 e 4 | $2.2 \mathrm{e}-4$ | 9.9 e 4 |
| $x=10^{2}$ | - | 2.8 e 3 | $8.3 \mathrm{e}-1$ | 6.1 e 3 | $3.8 \mathrm{e}-2$ | 1.3 e 4 | $1.8 \mathrm{e}-3$ | 2.8 e 4 | $8.2 \mathrm{e}-5$ | 6.0 e 4 |

$x=(a g)^{-2}$ with a lattice spacing and g coupling constant
$\delta_{g}=$ error in CNOT channel
$\tilde{\epsilon}^{2}=$ worst case mean square error in mean positron density

Data and Conclusion (Room for Improvement)

Far-term Simulation (N is size of lattice, Λ is electric cutoff)

Upper Bounds on T-gate Cost of Specific Simulations ($\mu=1, \tilde{\epsilon}^{2}=0.1$)				
	Short Time ($T=10 / x$)		Long Time ($T=1000 / x$)	
	Sampling	Estimating	Sampling	Estimating
$N=4, \Lambda=2$				
Strong Coupling ($x=0.1$)	$6.5 \cdot 10^{7}$	$2.4 \cdot 10^{11}$	$8.8 \cdot 10^{10}$	$3.3 \cdot 10^{14}$
Weak Coupling ($x=10$)	$5.0 \cdot 10^{6}$	$1.8 \cdot 10^{10}$	$7.0 \cdot 10^{9}$	$2.6 \cdot 10^{13}$
$N=16, \Lambda=2$				
Strong Coupling ($x=0.1$)	$7.2 \cdot 10^{8}$	$2.5 \cdot 10^{12}$	$9.4 \cdot 10^{11}$	$3.3 \cdot 10^{15}$
Weak Coupling ($x=10$)	$5.6 \cdot 10^{7}$	$1.9 \cdot 10^{11}$	$7.6 \cdot 10^{10}$	$2.7 \cdot 10^{14}$
$N=16, \Lambda=4$				
Strong Coupling ($x=0.1$)	$1.9 \cdot 10^{9}$	$6.3 \cdot 10^{12}$	$2.3 \cdot 10^{12}$	$8.1 \cdot 10^{15}$
Weak Coupling ($x=10$)	$9.6 \cdot 10^{7}$	$3.2 \cdot 10^{11}$	$1.2 \cdot 10^{11}$	$4.2 \cdot 10^{14}$
$N=64, \Lambda=2$				
Strong Coupling ($x=0.1$)	$6.6 \cdot 10^{9}$	$2.1 \cdot 10^{13}$	$8.5 \cdot 10^{12}$	$2.9 \cdot 10^{16}$
Weak Coupling ($x=10$)	$5.2 \cdot 10^{8}$	$1.6 \cdot 10^{12}$	$6.9 \cdot 10^{11}$	$2.3 \cdot 10^{15}$
$N=64, \Lambda=4$				
Strong Coupling ($x=0.1$)	$1.7 \cdot 10^{10}$	$5.4 \cdot 10^{13}$	$2.0 \cdot 10^{13}$	$6.9 \cdot 10^{16}$
Weak Coupling ($x=10$)	$8.7 \cdot 10^{8}$	$2.7 \cdot 10^{12}$	$1.1 \cdot 10^{12}$	$3.6 \cdot 10^{15}$
$N=64, \Lambda=8$				
Strong Coupling ($x=0.1$)	$4.5 \cdot 10^{10}$	$1.5 \cdot 10^{14}$	$5.3 \cdot 10^{13}$	$1.8 \cdot 10^{17}$
Weak Coupling ($x=10$)	$1.5 \cdot 10^{9}$	$4.6 \cdot 10^{12}$	$1.7 \cdot 10^{12}$	$5.8 \cdot 10^{15}$

Questions on the Road to Quantum Simulating QCD:

Questions on the Road to Quantum Simulating QCD:

- Can our algorithms generalize to higher dimensions and $\operatorname{SU}(N)$?

Questions on the Road to Quantum Simulating QCD:

- Can our algorithms generalize to higher dimensions and $\mathrm{SU}(N)$?
- How do other algorithms (LCU, Qubitization) compare?

Questions on the Road to Quantum Simulating QCD:

- Can our algorithms generalize to higher dimensions and $\mathrm{SU}(N)$?
- How do other algorithms (LCU, Qubitization) compare?
- Could other formulations of the model be beneficial? (SU(2) Quantum Link Model, Loop-String-Hadron)

Questions on the Road to Quantum Simulating QCD:

- Can our algorithms generalize to higher dimensions and $\mathrm{SU}(N)$?
- How do other algorithms (LCU, Qubitization) compare?
- Could other formulations of the model be beneficial? (SU(2) Quantum Link Model, Loop-String-Hadron)
- How can we best realize gauge invariance during simulation?

Our work is a benchmark to aid in answering these questions.

LCU - [Childs, Wiebe (2012) 10.26421/QIC12.11-12]
Qubitization - [Low, Chuang (2019) 10.22331/q-2019-07-12-163]
Quantum Link Model - [Chandrasekharan, Wiese (1996) 10.1016/S0550-3213(97)80041-7]
Loop-String-Hadron - [Raychowdhury, Stryker (2019) 10.1103/PhysRevD.101.114502]

Preliminary Results - SU(2):

Using abelian gauge invariant hopping decomposition* - Discussed in J. Stryker's talk this evening, 10:45pm EST:
$\mathrm{T}\left(\frac{1}{a^{2} g^{2}}, \Lambda, \frac{2 m}{g^{2} a}, N, T\right)=$ Trotter Steps to reach error 10^{-3}.

Preliminary Results - SU(2):

Using abelian gauge invariant hopping decomposition* - Discussed in J. Stryker's talk this evening, 10:45pm EST:
$\mathrm{T}\left(\frac{1}{a^{2} g^{2}}, \Lambda, \frac{2 m}{g^{2} a}, N, T\right)=$ Trotter Steps to reach error 10^{-3}.
$T(y, y, 1, y, 1 / y)$ Trotter Steps

$*_{\text {[J. Stryker (2021) arXiv:2105.11548] }}$

Using amplitude estimation to estimate $\langle\hat{O}\rangle$

If $\hat{O}=\sum_{a=0}^{2^{m}-1} \hat{U}_{a}, \hat{U}_{a}$ unitary, then above circuit ends up in:
$\operatorname{Prob}($ measure $|00 \ldots 0\rangle)=C\langle\hat{O}\rangle, C$ known constant.

