Lattice July 2021

Quantum Algorithms for Simulating the Lattice Schwinger Model

Alexander F. Shaw University of Maryland - College Park

Based on work of same title in Quantum 4, 306 (2020) by AF Shaw, P Lougovski, JR Stryker and N Wiebe

Why Quantum Simulation?

 Using fundamental models to calculate physics at longer length scales is hard.

Why Quantum Simulation?

- Using fundamental models to calculate physics at longer length scales is hard.
- Access different physics (real-time dynamics)

Why Quantum Simulation?

- Using fundamental models to calculate physics at longer length scales is hard.
- Access different physics (real-time dynamics)
- Classical methods have been very successful, but hit roadblocks. (exponential resource scalings, sign problems)

<□ > < @ > < 분 > < 분 > 분 | = ♡ Q @ 3/10

How to, using real-time dynamics:

 $1. \ \mbox{Map}$ states of your theory to states of the simulator

- 1. Map states of your theory to states of the simulator
- 2. Prepare an initial state $|\psi_0\rangle$

- 1. Map states of your theory to states of the simulator
- 2. Prepare an initial state $|\psi_0
 angle$
- 3. Compute the time-evolved state $e^{-iHt/\hbar} |\psi_0\rangle$.

- 1. Map states of your theory to states of the simulator
- 2. Prepare an initial state $|\psi_0
 angle$
- 3. Compute the time-evolved state $e^{-iHt/\hbar} |\psi_0\rangle$.
- 4. Measure in the basis of some observable O.

- 1. Map states of your theory to states of the simulator
- 2. Prepare an initial state $|\psi_0\rangle$
- 3. Compute the time-evolved state $e^{-iHt/\hbar} |\psi_0\rangle$.
- 4. Measure in the basis of some observable O.
- 5. Repeat to estimate $\langle O \rangle$.

How to, using real-time dynamics:

- 1. Map states of your theory to states of the simulator
- 2. Prepare an initial state $|\psi_0
 angle$
- 3. Compute the time-evolved state $e^{-iHt/\hbar} |\psi_0\rangle$.
- 4. Measure in the basis of some observable O.
- 5. Repeat to estimate $\langle O \rangle$.

How hard is this to do on a quantum computer? Depends on the computational model.

How to, using real-time dynamics:

- 1. Map states of your theory to states of the simulator
- 2. Prepare an initial state $|\psi_0
 angle$
- 3. Compute the time-evolved state $e^{-iHt/\hbar} |\psi_0\rangle$.
- 4. Measure in the basis of some observable O.
- 5. Repeat to estimate $\langle O \rangle$.

How hard is this to do on a quantum computer? Depends on the computational model.

	Cheap	Expensive		
Near-term (NISQ)	Single-qubit	Entangling gates		
	rotations	(CNOT)		
Far-term	Clifford	T-gates		
(Fault-Tolerant)	+ CNOT gates			

QCD is too hard to start with.

<ロト <回ト < 言ト < 言ト < 言ト 三日 つへの 4/10

QCD is too hard to start with.

The Lattice Schwinger Model*

odd sites - electrons even sites - positrons link sites - electric field

QCD is too hard to start with.

The Lattice Schwinger Model*

Simplest model that replicates features of QCD (confinement, spontaneous breaking of chiral symmetry).

```
*[Kogut, Susskind (1975) 10.1103/PhysRevD.11.395]
```

The Lattice Schwinger Model

Computational basis = occupation basis.

The Lattice Schwinger Model

Computational basis = occupation basis. EX: for a fermion on an odd site (after Jordan-Wigner):

computational basis	occupation basis
$ 0\rangle$	presence of electron
1 angle	vacuum

The Lattice Schwinger Model

Computational basis = occupation basis. EX: for a fermion on an odd site (after Jordan-Wigner):

computational basis	occupation basis		
0 angle	presence of electron		
1 angle	vacuum		

The value of the electric field is represented as a binary integer in a qubit register, one for each link.

Decompose the Schwinger Model Hamiltonian

$$\begin{aligned} H_{\text{Schwinger}} &= \sum_{r} \hat{E}_{r}^{2} + \mu \sum_{r} (-)^{r} \hat{\psi}_{r}^{\dagger} \hat{\psi}_{r} + x \sum_{r} \left[\hat{U}_{r} \hat{\psi}_{r}^{\dagger} \hat{\psi}_{r+1} - \hat{U}_{r}^{\dagger} \hat{\psi}_{r} \hat{\psi}_{r+1}^{\dagger} \right] \\ &= \underbrace{H_{\text{E-field}} + H_{\text{mass}}}_{\text{diagonal in computational basis}} + \underbrace{H_{\text{interaction}}}_{\text{tensor product of pauli matrices}} \\ &= \sum_{j=1}^{m} H_{j} \quad \leftarrow \quad \text{Simulatable!} \end{aligned}$$

Decompose the Schwinger Model Hamiltonian

$$\begin{aligned} H_{\text{Schwinger}} &= \sum_{r} \hat{E}_{r}^{2} + \mu \sum_{r} (-)^{r} \hat{\psi}_{r}^{\dagger} \hat{\psi}_{r} + x \sum_{r} \left[\hat{U}_{r} \hat{\psi}_{r}^{\dagger} \hat{\psi}_{r+1} - \hat{U}_{r}^{\dagger} \hat{\psi}_{r} \hat{\psi}_{r+1}^{\dagger} \right] \\ &= \underbrace{H_{\text{E-field}} + H_{\text{mass}}}_{\text{diagonal in computational basis}} + \underbrace{H_{\text{interaction}}}_{\text{tensor product of pauli matrices}} \\ &= \sum_{j=1}^{m} H_{j} \quad \leftarrow \quad \text{Simulatable!} \end{aligned}$$

$$V_{\text{trotter step}}(t) \coloneqq \prod_{j=1}^{m} e^{-iH_{j}t/2} \prod_{j=m}^{1} e^{-iH_{j}t/2} \\ \left\| e^{-iH_{\text{Schwinger}}t} - V_{\text{trotter step}}(t) \right\| \leq \frac{1}{12} \sum_{x,y>x,z>x} \left\| \left[[H_{x}, H_{y}], H_{z} \right] \right\| t^{3} \\ &+ \frac{1}{24} \sum_{x,y>x} \left\| \left[[H_{x}, H_{y}], H_{x} \right] \right\| t^{3} \quad \doteq \quad \delta(\text{lattice parameters, evolution time}). \end{aligned}$$

Error bound from [Childs et al. (2021) 10.1103/PhysRevX.11.011020]

• Decomposition of
$$H_{\text{Schwinger}} = \sum_j H_j$$

- Decomposition of $H_{\text{Schwinger}} = \sum_j H_j$
- Circuits to implement each e^{-iH_jt} in both the near-term (NISQ) and far-term settings.

- Decomposition of $H_{\text{Schwinger}} = \sum_j H_j$
- Circuits to implement each e^{-iH_jt} in both the near-term (NISQ) and far-term settings.

Calculate

 $\delta(ext{lattice parameters}) \geq \left\| e^{-i \mathcal{H}_{ ext{Schwinger}} t} - \mathcal{V}_{ ext{trotter step}}(t)
ight\|$

- Decomposition of $H_{\text{Schwinger}} = \sum_j H_j$
- Circuits to implement each e^{-iH_jt} in both the near-term (NISQ) and far-term settings.

Calculate

 $\delta(ext{lattice parameters}) \geq \left\| e^{-i \mathcal{H}_{ ext{Schwinger}} t} - \mathcal{V}_{ ext{trotter step}}(t)
ight\|$

Upper bound on sufficient quantum-computational resources required for an arbitrary simulation:

• Decomposition of $H_{\text{Schwinger}} = \sum_j H_j$

 Circuits to implement each e^{-iH_jt} in both the near-term (NISQ) and far-term settings.

Calculate

 $\delta(ext{lattice parameters}) \geq \left\| e^{-i \mathcal{H}_{ ext{Schwinger}} t} - V_{ ext{trotter step}}(t)
ight\|$

Upper bound on sufficient quantum-computational resources required for an arbitrary simulation:

COST(total evolution time, error in final state, lattice parameters)

$$\in \widetilde{O}\left(rac{N^{3/2}T^{3/2}\Lambda x^{1/2}}{\delta^{1/2}}
ight)$$

where N =lattice size, T =evolution time, $\Lambda =$ E-field cutoff, and $x = 1/(ag)^2$ (a lattice spacing, g coupling constant)

Data and Conclusion (Room for Improvement)

We compile these results further with **estimation of mean positron/electron density** :

					· · · ·	,		•			
ſ		$\delta_g = 10^{-3}$		$\delta_g = 10^{-4}$		$\delta_g = 10^{-5}$		$\delta_g = 10^{-6}$		$\delta_g = 10^{-7}$	
Γ		$\tilde{\epsilon}^2$	CNOT	$\tilde{\epsilon}^2$	CNOT	$\tilde{\epsilon}^2$	CNOT	$\tilde{\epsilon}^2$	CNOT	$\tilde{\epsilon}^2$	CNOT
Γ	$x = 10^{-2}$	—	7.3e4	—	1.6e5		3.4e5	—	7.3e5	5.6e-2	1.6e6
	$x = 10^{-1}$	—	1.6e4	_	3.5e4		7.5e4	5.9e-2	1.6e5	2.7e-3	3.5e5
	x = 1		4.6e3	_	9.9e3	1.0e-1	2.1e4	4.7e-3	4.6e4	2.2e-4	9.9e4
	$x = 10^2$	_	2.8e3	8.3e-1	6.1e3	3.8e-2	1.3e4	1.8e-3	2.8e4	8.2e-5	6.0e4

Near-term (NISQ) Simulation (no ancilla)

 $x = (ag)^{-2}$ with a lattice spacing and g coupling constant $\delta_g =$ error in CNOT channel $\tilde{\epsilon}^2 =$ worst case mean square error in mean positron density

Data and Conclusion (Room for Improvement)

Far-term Simulation (N is size of lattice, Λ is electric cutoff)

Upper Bounds on T-gate Cost of Specific Simulations ($\mu = 1, \tilde{\epsilon}^2 = 0.1$)							
	Short Time	(T = 10/x)	Long Time $(T = 1000/x)$				
	Sampling	Estimating	Sampling	Estimating			
$N = 4, \ \Lambda = 2$							
Strong Coupling $(x = 0.1)$	$6.5 \cdot 10^{7}$	$2.4 \cdot 10^{11}$	$8.8 \cdot 10^{10}$	$3.3 \cdot 10^{14}$			
Weak Coupling $(x = 10)$	$5.0 \cdot 10^{6}$	$1.8 \cdot 10^{10}$	$7.0 \cdot 10^{9}$	$2.6 \cdot 10^{13}$			
	$N = 16, \Lambda = 2$						
Strong Coupling $(x = 0.1)$	$7.2 \cdot 10^{8}$	$2.5 \cdot 10^{12}$	$9.4 \cdot 10^{11}$	$3.3 \cdot 10^{15}$			
Weak Coupling $(x = 10)$	$5.6 \cdot 10^{7}$	$1.9 \cdot 10^{11}$	$7.6 \cdot 10^{10}$	$2.7\cdot10^{14}$			
	N = 1	6, $\Lambda = 4$					
Strong Coupling $(x = 0.1)$ 1.9 · 10 ⁹ 6.3 · 10 ¹² 2.3 · 10 ¹² 8.1 · 10 ¹⁵							
Weak Coupling $(x = 10)$	$9.6\cdot 10^7$	$3.2 \cdot 10^{11}$	$1.2 \cdot 10^{11}$	$4.2 \cdot 10^{14}$			
$N = 64, \Lambda = 2$							
Strong Coupling $(x = 0.1)$	$6.6 \cdot 10^9$	$2.1 \cdot 10^{13}$	$8.5 \cdot 10^{12}$	$2.9 \cdot 10^{16}$			
Weak Coupling $(x = 10)$	$5.2 \cdot 10^{8}$	$1.6 \cdot 10^{12}$	$6.9 \cdot 10^{11}$	$2.3 \cdot 10^{15}$			
$N = 64, \Lambda = 4$							
Strong Coupling $(x = 0.1)$	$1.7 \cdot 10^{10}$	$5.4 \cdot 10^{13}$	$2.0 \cdot 10^{13}$	$6.9 \cdot 10^{16}$			
Weak Coupling $(x = 10)$	$8.7 \cdot 10^{8}$	$2.7 \cdot 10^{12}$	$1.1 \cdot 10^{12}$	$3.6 \cdot 10^{15}$			
$N = 64, \Lambda = 8$							
Strong Coupling $(x = 0.1)$	$4.5 \cdot 10^{10}$	$1.5 \cdot 10^{14}$	$5.3 \cdot 10^{13}$	$1.8 \cdot 10^{17}$			
Weak Coupling $(x = 10)$	$1.5 \cdot 10^{9}$	$4.6 \cdot 10^{12}$	$1.7 \cdot 10^{12}$	$5.8 \cdot 10^{15}$			

9/10

(미) (권) (문) (문) 문) 문) (이) (0) 10/10

Can our algorithms generalize to higher dimensions and SU(N)?

- Can our algorithms generalize to higher dimensions and SU(N)?
- How do other algorithms (LCU, Qubitization) compare?

- Can our algorithms generalize to higher dimensions and SU(N)?
- ► How do other algorithms (LCU, Qubitization) compare?
- Could other formulations of the model be beneficial? (SU(2) -Quantum Link Model, Loop-String-Hadron)

- Can our algorithms generalize to higher dimensions and SU(N)?
- How do other algorithms (LCU, Qubitization) compare?
- Could other formulations of the model be beneficial? (SU(2) -Quantum Link Model, Loop-String-Hadron)
- How can we best realize gauge invariance during simulation?

Our work is a **benchmark** to aid in answering these questions.

LCU - [Childs, Wiebe (2012) 10.26421/QIC12.11-12] Qubitization - [Low, Chuang (2019) 10.22331/q-2019-07-12-163] Quantum Link Model - [Chandrasekharan, Wiese (1996) 10.1016/S0550-3213(97)80041-7] Loop-String-Hadron - [Raychowdhury, Stryker (2019) 10.1103/PhysRevD.101.114502]

Preliminary Results - SU(2):

Using abelian gauge invariant hopping decomposition* - Discussed in J. Stryker's talk **this evening**, **10:45pm EST**:

$$T\left(\frac{1}{a^2g^2},\Lambda,\frac{2m}{g^2a},N,T\right) =$$
 Trotter Steps to reach error 10^{-3} .

Preliminary Results - SU(2):

Using abelian gauge invariant hopping decomposition* - Discussed in J. Stryker's talk **this evening, 10:45pm EST**:

$$T\left(\frac{1}{a^2g^2},\Lambda,\frac{2m}{g^2a},N,T\right) =$$
Trotter Steps to reach error 10^{-3} .

Using amplitude estimation to estimate $\langle \hat{O}
angle$

If $\hat{O} = \sum_{a=0}^{2^m-1} \hat{U}_a$, \hat{U}_a unitary, then above circuit ends up in: Prob(measure $|00...0\rangle) = C\langle \hat{O} \rangle$, C known constant.