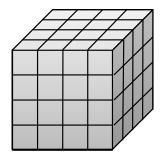
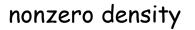
Toward dense QCD in guantum computers

Arata Yamamoto (University of Tokyo)

PRD 104, 014506 (2021) [arXiv:2104.10669]

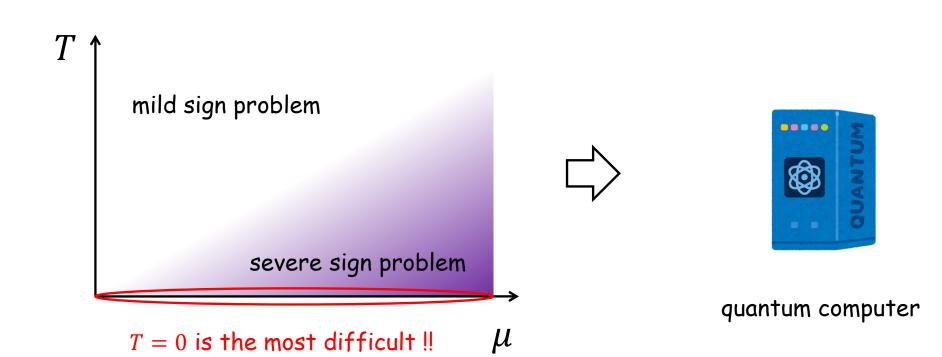
Lattice gauge theory in quantum computers





quantum computer

Lattice gauge theory in quantum computers



Lagrangian formalism

Hamiltonian formalism

$$Z = \int DA \, e^{-\int d\tau \, L}$$

chemical potential

thermal average

$$E = \langle \Psi | H | \Psi \rangle$$

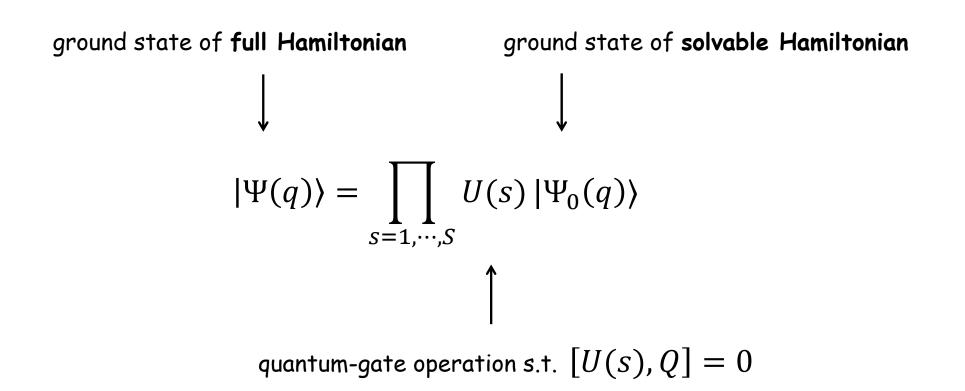
particle number

ground state

Hamiltonian
$$H$$
 & fermion number operator Q

$$[H,Q] = 0 \qquad \longrightarrow \qquad Q|\Psi(q)\rangle = q|\Psi(q)\rangle$$

"nonzero density" = ground state $|\Psi(q)\rangle$ w/fermion number $q \neq 0$



quantum adiabatic algorithm

Farhi et al. (2000)

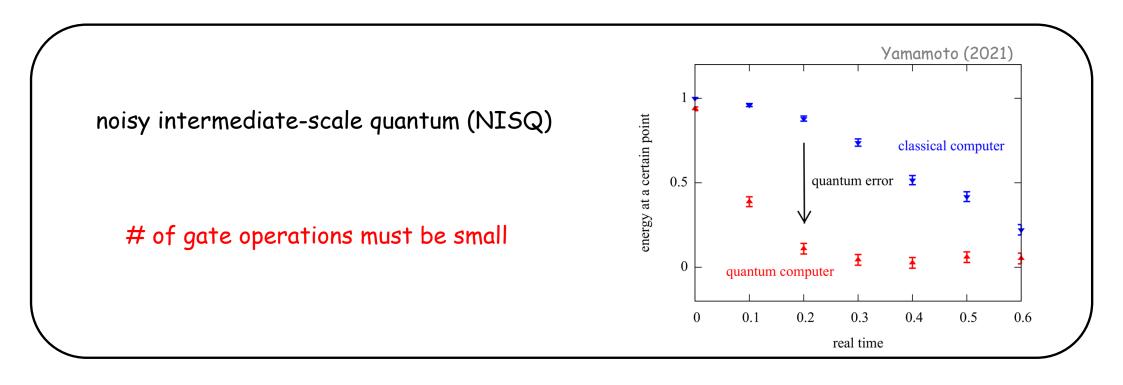
\checkmark adiabatic theorem

- \checkmark U(s) contains no free parameters
- \checkmark exact in $S \rightarrow \infty$

quantum variational algorithm

Peruzzo et al. (2014)

- ✓ hybrid variational method
- \checkmark U(s) contains variational parameters
- \checkmark S can be small



 \checkmark exact in $S \rightarrow \infty$

 \checkmark S can be small

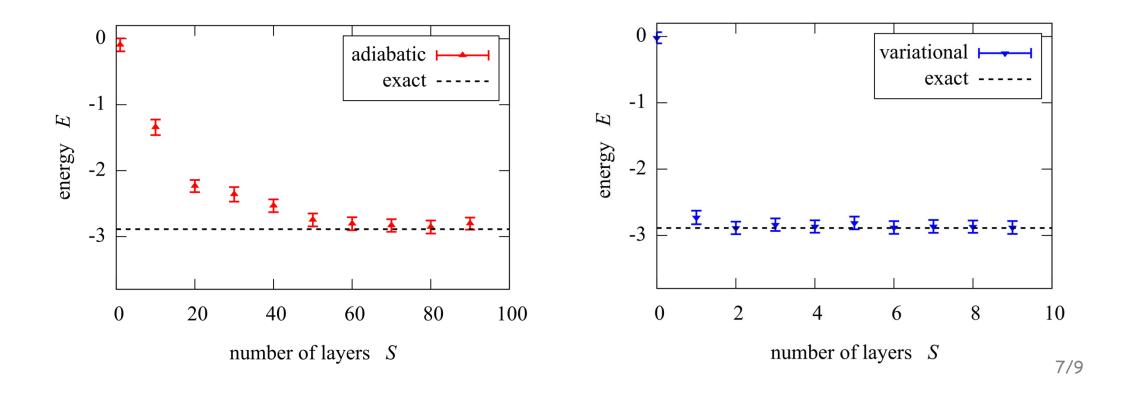
benchmark test of adiabatic & variational algorithms

✓ "simulator" (classical computer to mimic quantum computer)

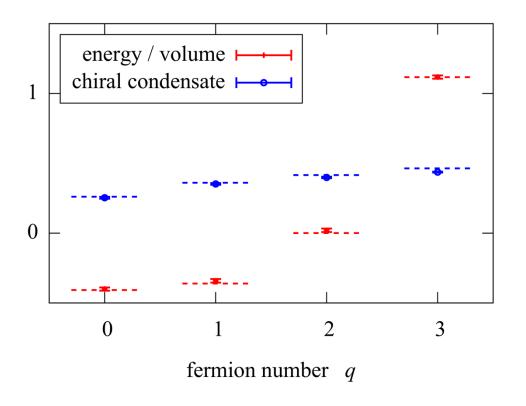
- ✓ Schwinger model
- ✓ 8-site lattice

adiabatic algorithm

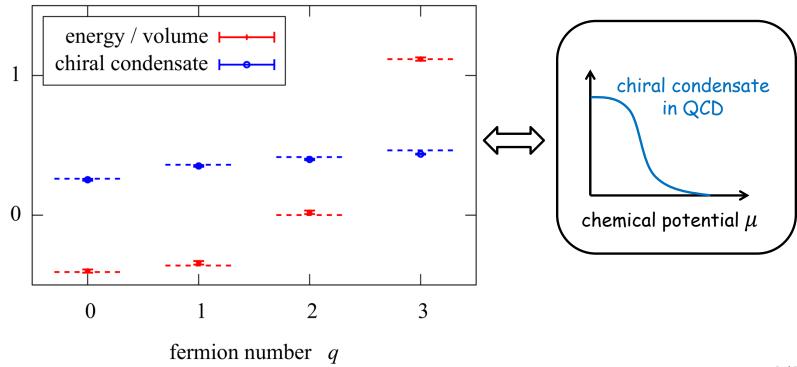
variational algorithm



ground state energy & chiral condensate



ground state energy & chiral condensate



Summary

✓ quantum simulation of lattice gauge theory at nonzero density

✓ benchmark tests of adiabatic & variational algorithms

 \checkmark applicable to QCD, someday in the future