Leapfrog Layers A Trainable Framework for Effective Topological Sampling

Sam Foreman*, Xiao-Yong Jin, James C. Osborn July, 2021

*foremans@anl.gov

arXiv:2105.03418

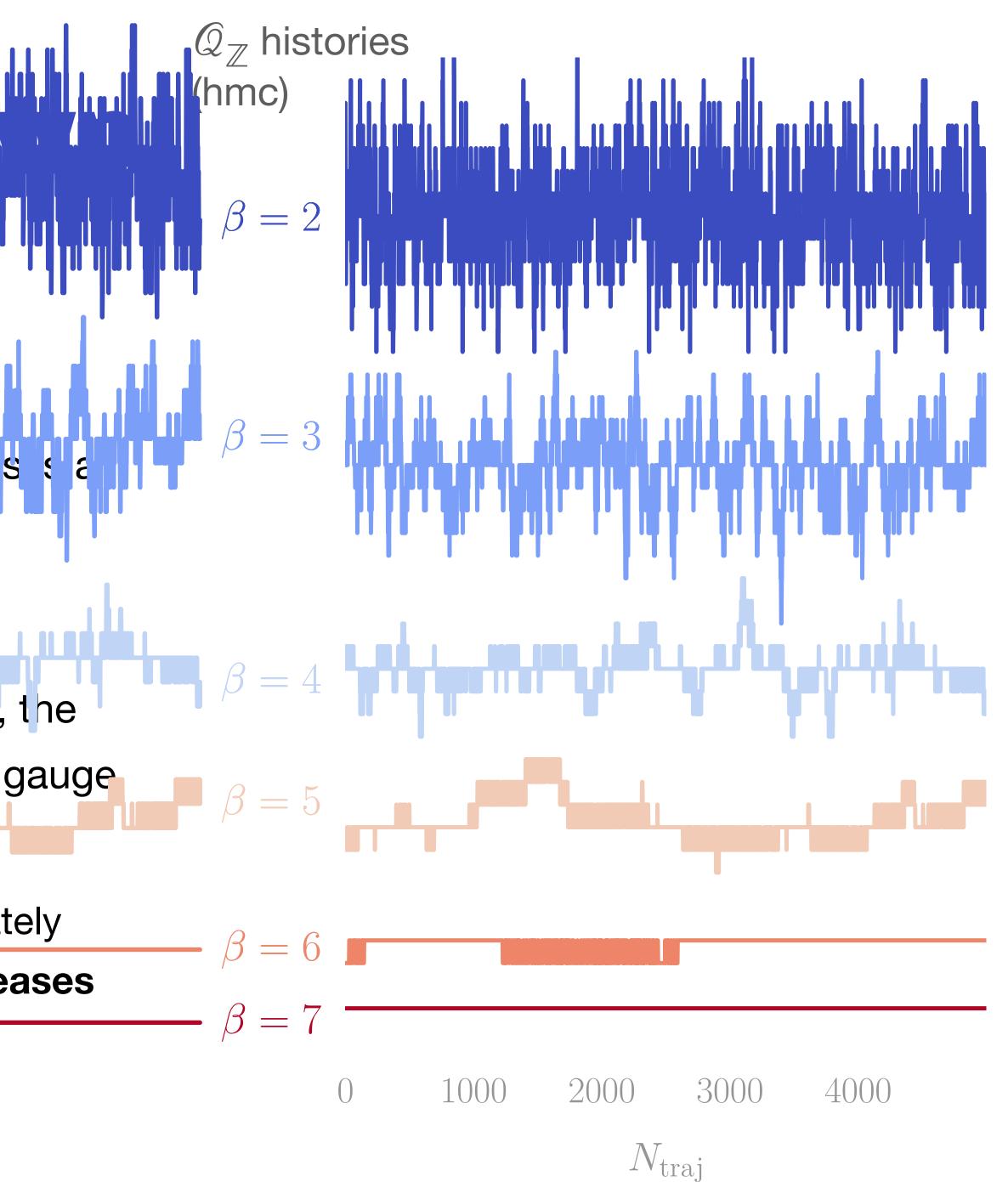
bit.ly/l2hmc-lattice21

bit.ly/l2hmc-surprise

github.com/saforem2/l2hmc-qcd

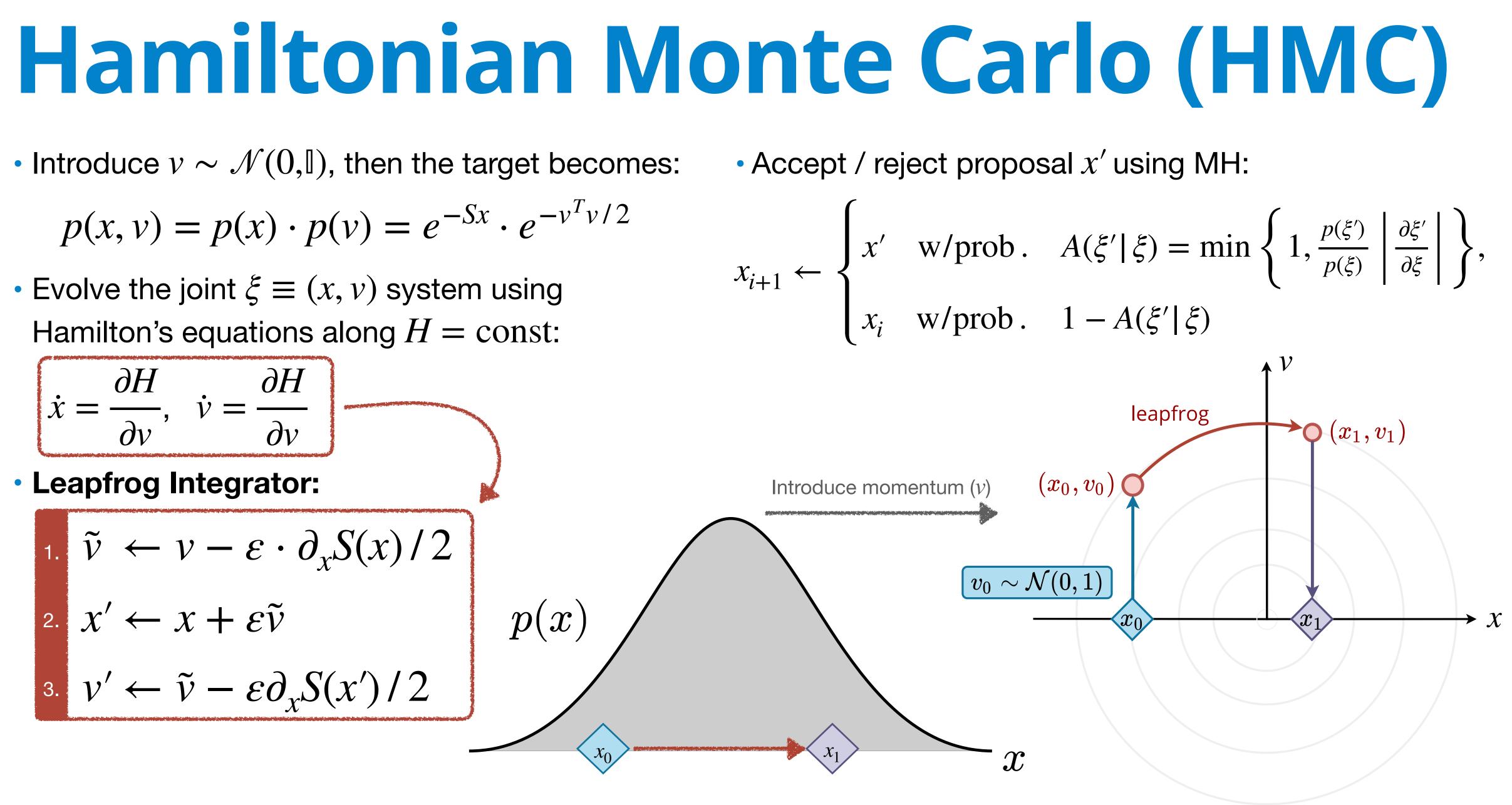
Critical S

- Goal: Draw *independent samples* from target distribution p(x).
 - Generating independent galle contiguration major bottleneck for Lattice QCD.
- Topological Freezing
 - As we approach the continuum limit $\beta \to \infty$, the MCMC updates get stuck in sectors of fixed gauge topology.
 - Number of trajectories needed to adequately sample different topological sectors increases
 exponentially

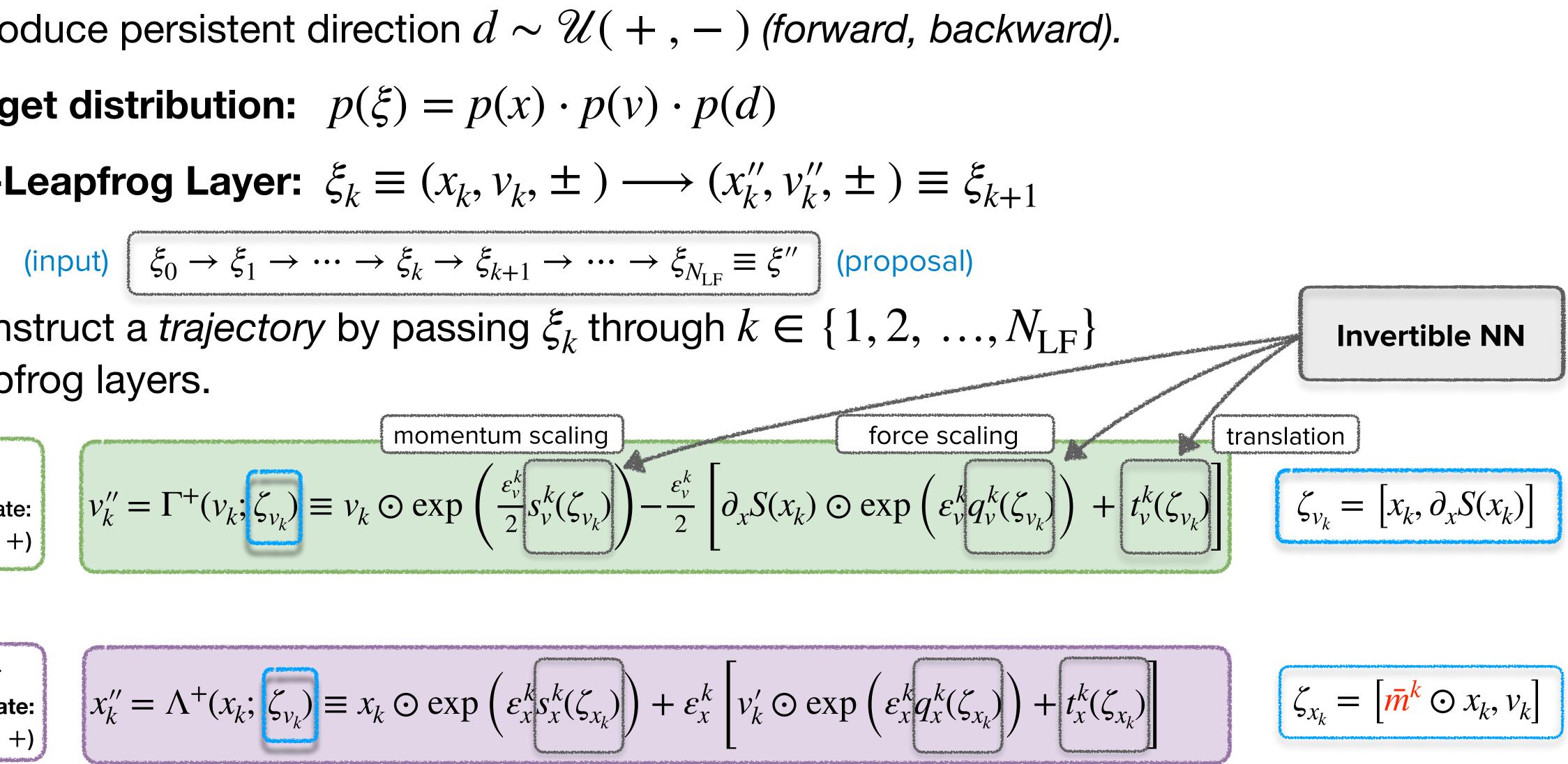


$$p(x,v) = p(x) \cdot p(v) = e^{-Sx} \cdot e^{-v^T v/2}$$

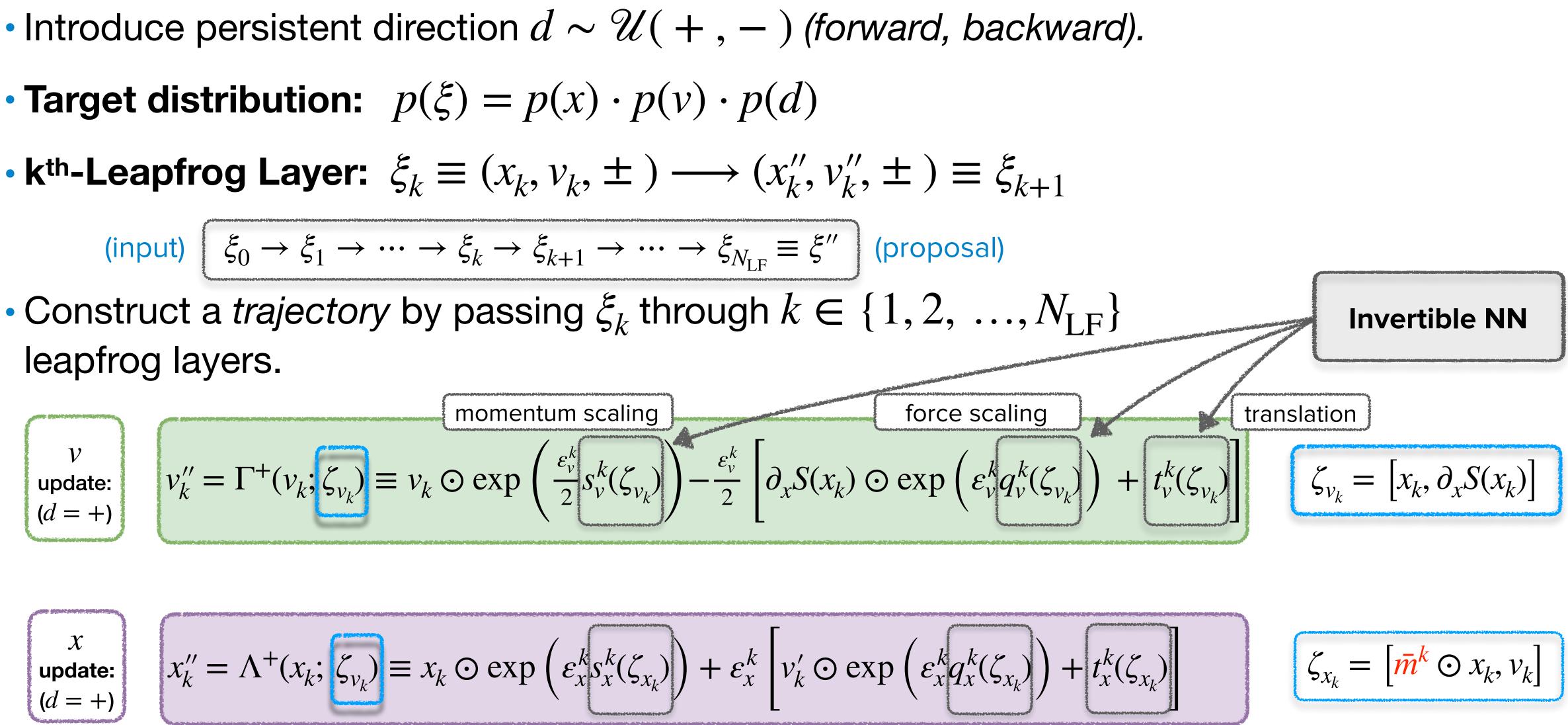
Hamilton's equations along H = const:



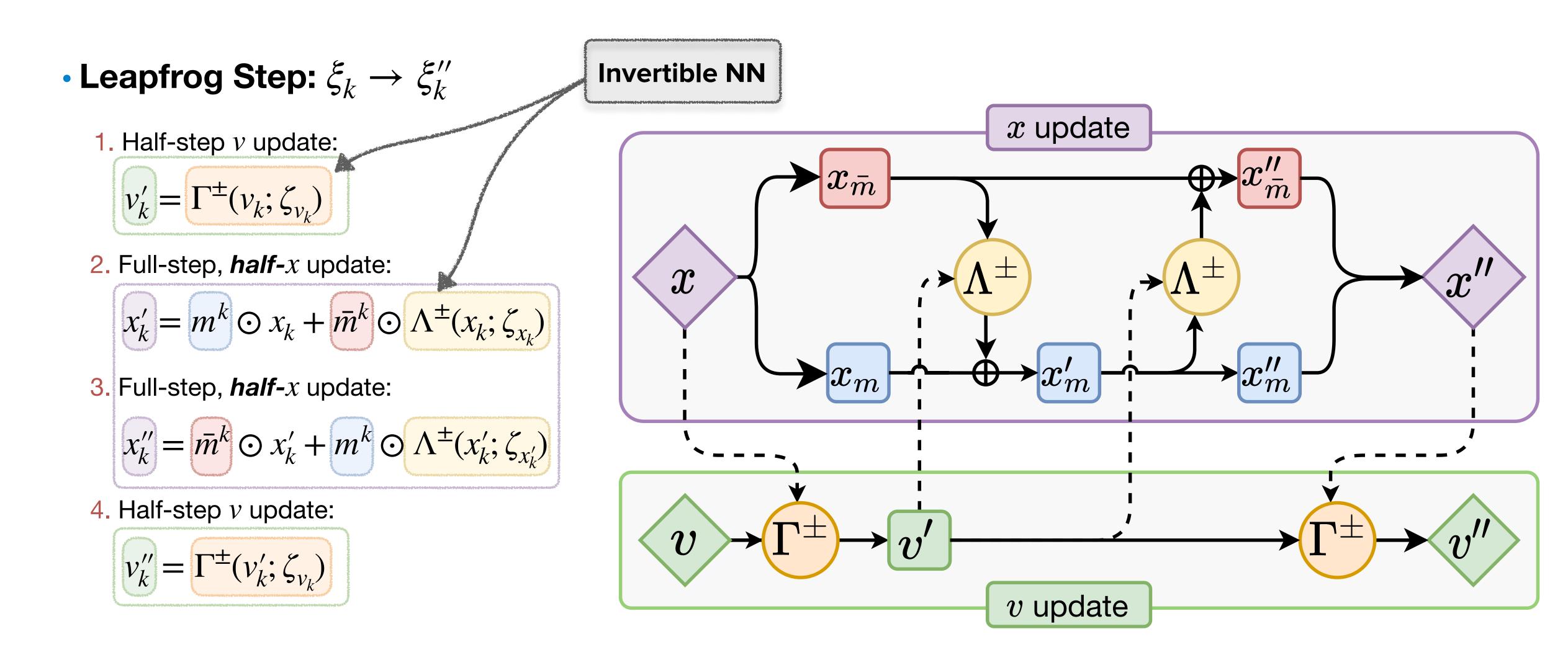
Leapfrog Layer



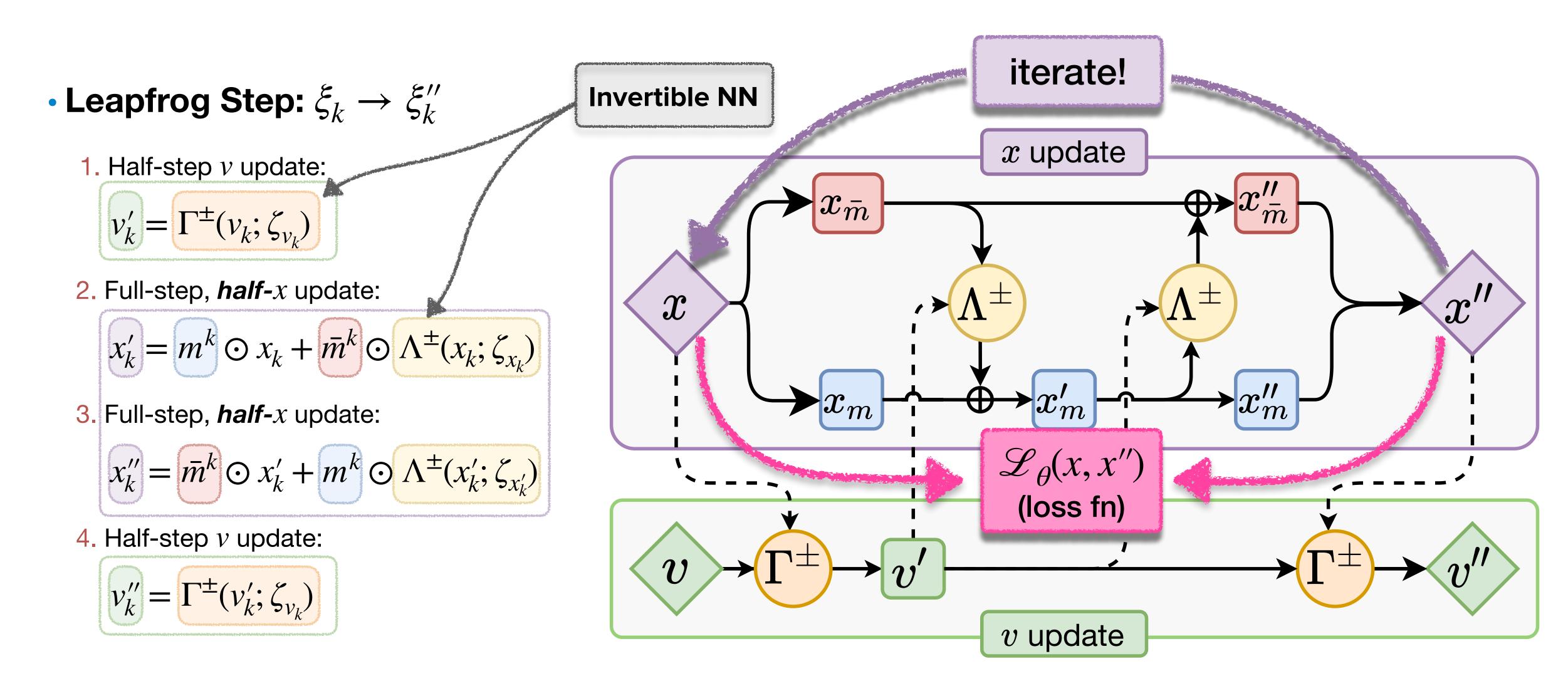
leapfrog layers.



12hmc: Generalized Leapfrog



12hmc: Generalized Leapfrog



2D U(1) Lattice Gauge Theory

• Link variables $U_{\mu}(n) = e^{ix_{\mu}(n)} \in U(1)$,

with $x_{\mu}(n) \in [-\pi, \pi]$.

Wilson action:

$$S_{\beta}(x) = \beta \sum_{P} 1 - \cos x_{P},$$

$$x_{\mu}(n)$$

$$x_{P} = x_{\mu}(n) + x_{\nu}(n + \hat{\mu}) - x_{\mu}(n + \hat{\nu}) - x_{\nu}(n)$$

Topological charge:

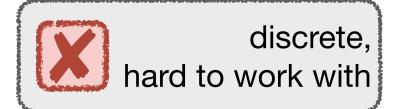
$$Q_{\mathbb{R}} = \frac{1}{2\pi} \sum_{P} \sin x_{P} \in \mathbb{R}$$

$$Q_{\mathbb{Z}} = \frac{1}{2\pi} \sum_{P} \left[x_{P} \right] \in \mathbb{Z}$$
$$\left[x_{P} \right] = x_{P} - 2\pi \left[\frac{x_{P} + \pi}{2\pi} \right]$$

 $-x_{\mu}(n+\hat{\nu})$

 $-x_{\nu}(n)$

 $\mathbf{x}_{\nu}(n+\hat{\mu})$



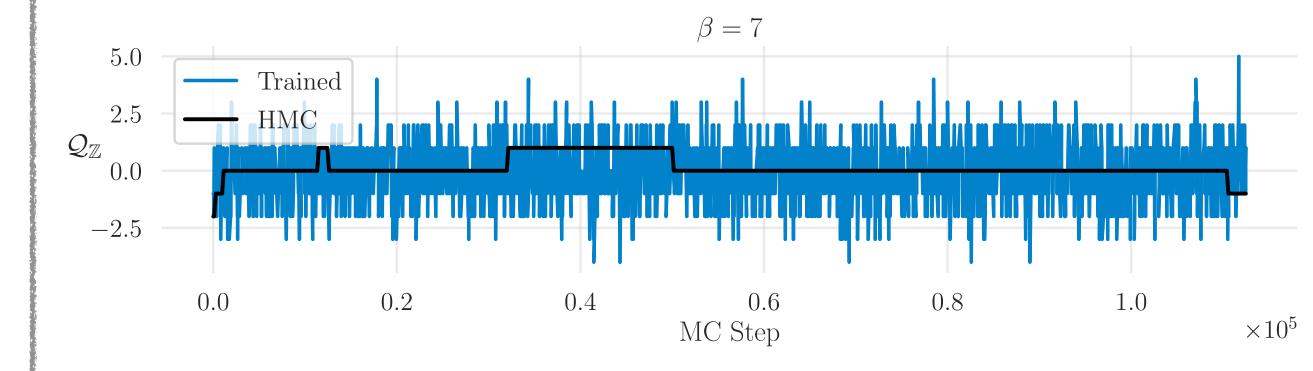
Loss function, $\mathscr{L}(\theta)$

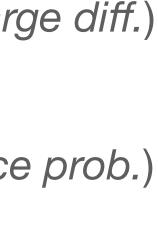
• We maximize the *expected* squared charge difference:

$$\mathscr{L}(\theta) = \mathbb{E}_{p(\xi)} \left[-\delta \mathcal{Q}_{\mathbb{R}}^{2}(\xi', \xi) \cdot A(\xi' | \xi) \right]$$

$$\delta \mathcal{Q}_{\mathbb{R}}^{2}(\xi', \xi) = \left(\mathcal{Q}_{\mathbb{R}}(x') - \mathcal{Q}_{\mathbb{R}}(x) \right)^{2} \quad \text{(squared chan}$$

$$A(\xi' | \xi) = \min \left\{ 1, \frac{p(\xi')}{p(\xi)} \left| \frac{\partial \xi'}{\partial \xi^{T}} \right| \right\} \quad \text{(acceptance)}$$





Simulated Annealing

• Introduce an **annealing schedule** during the training phase:

$$\left\{\gamma_t\right\}_{t=0}^N = \left\{\gamma_0, \gamma_1, \dots, \gamma_{N-1}, \gamma_N\right\},$$

$$\gamma_0 < \gamma_1 < \cdots < \gamma_N \equiv 1,$$

$$\delta_{\gamma} \equiv \|\gamma_{t+1} - \gamma_t\| \ll 1$$

- For $\|\gamma_t\| < 1$, this helps to rescale (*shrink*) the energy barriers between isolated modes
 - Allows sampler to explore previously inaccessible regions of the target distribution.
- Target distribution becomes:

•
$$p_t(x) \propto e^{-\gamma_t S_\beta(x)}$$
, for $t = 0, 1, ..., N$

ex: $\{0.1, 0.2, 0.3, \dots, 0.9, 1.0\}$

increasing

varied *slowly*

Training Algorithm

input:

- 1. Loss function, $\mathcal{L}_{\theta}(\xi', \xi, A(\xi'|\xi))$
- 2. Batch of initial states, x
- 3. Learning rate schedule, $\{\alpha_t\}_{t=0}^{N_{\text{train}}}$
- 4. Annealing schedule, $\{\gamma_t\}_{t=0}^{N_{ ext{train}}}$
- 5. Target distribution, $p_t(x) \propto e^{-\gamma_t S_\beta(x)}$

Initialize weights
$$\theta$$

for $0 < t < N_{\text{train}}$:

resample
$$v \sim \mathcal{N}(0, 1)$$

resample $d \sim \mathcal{U}(+, -)$
construct $\xi_0 \equiv (x_0, v_0, d_0)$
for $0 \leq k < N_{\text{LF}}$:
| propose (leapfrog layer) $\xi'_k \leftarrow \xi_k$
compute $A(\xi'|\xi) = \min\left\{1, \frac{p(\xi')}{p(\xi)} \left|\frac{\partial \xi'}{\partial \xi^T}\right|\right\}$
update $\mathcal{L} \leftarrow \mathcal{L}_{\theta}(\xi', \xi, A(\xi'|\xi))$
backprop $\theta \leftarrow \theta - \alpha_t \nabla_{\theta} \mathcal{L}$

assign $x_{t+1} \leftarrow \{x \text{ with probability } (1 - A(\xi'|\xi)).$

re-sample momentum + direction

> construct trajectory

Compute loss + backprop

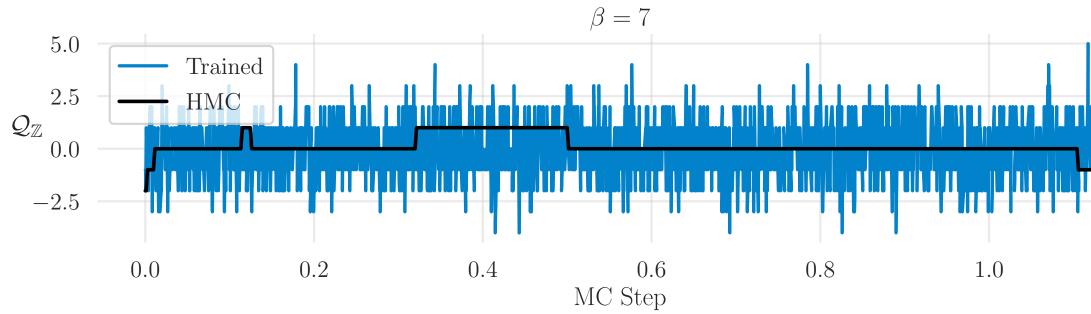
Metropolis-Hastings accept/reject

Results

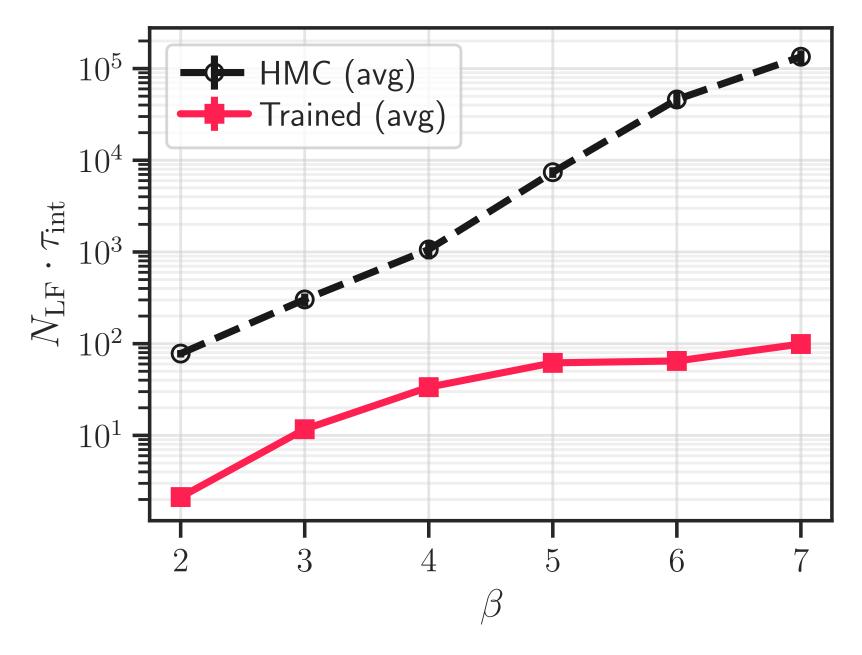
- Want to calculate $\langle \mathcal{O} \rangle \propto \left[\mathscr{D} x \right] \mathcal{O}(x) e^{-S(x)}$
- If we had *independent* configurations, we could approximate by

$$\langle \mathcal{O} \rangle \simeq \frac{1}{N} \sum_{n=1}^{N} \mathcal{O}(x_n) \to \sigma^2 = \frac{1}{N} \text{Var} \left[\mathcal{O}(x) \right]$$

- Accounting for *autocorrelation*: $\sigma^2 = \frac{\tau_{\text{int}}^{\omega}}{N} \text{Var}\left[\mathcal{O}(x)\right]$
- We measure the performance of our model by looking at the *integrated autocorrelation time*, τ_{int} of the topological charge $Q_{\mathbb{Z}}$.
- For generic HMC, it is known that $\tau_{\rm int}$ grows exponentially as $\beta\to\infty$ (critical slowing down)



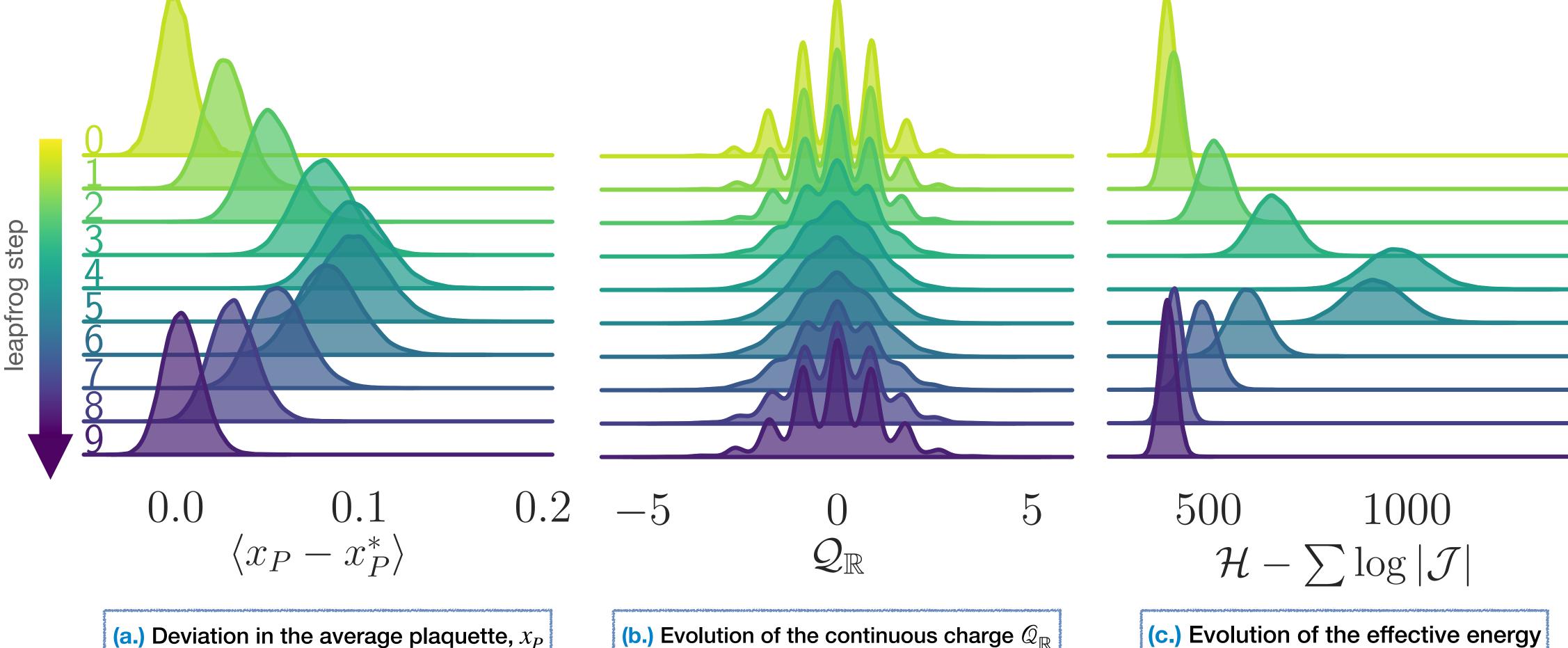
(d.) Plot of the topological charge history $\mathcal{Q}_{\mathbb{Z}}$ vs MC Step



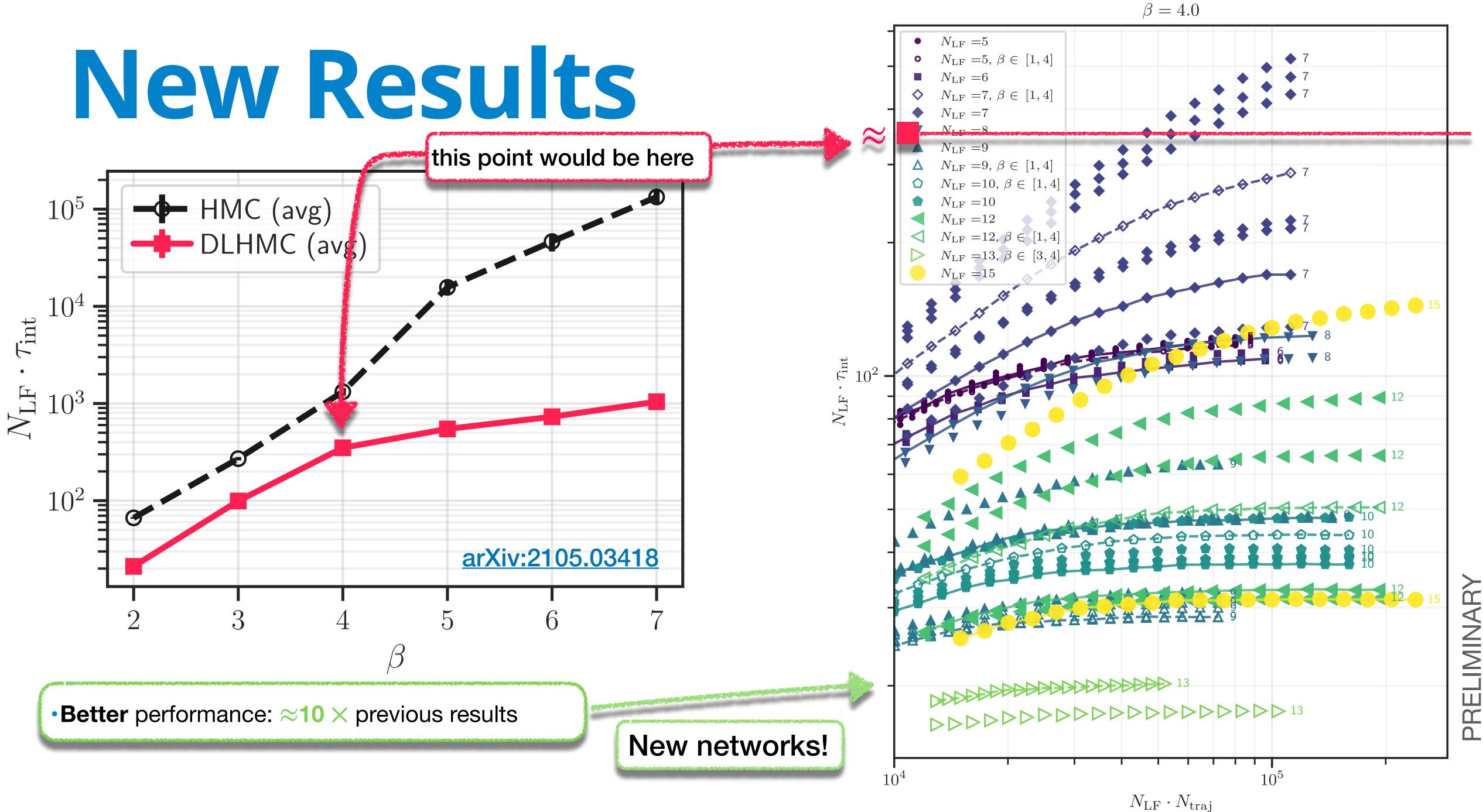
(c.) Estimate of the integrated autocorrelation time $\tau_{\rm int}$ vs β for both the trained model and generic HMC.

Interpretation

•Look at how different quantities evolve over the course of a trajectory ($N_{\rm LF}$ leapfrog layers) See that the sampler artificially increases the energy during the first half of the trajectory

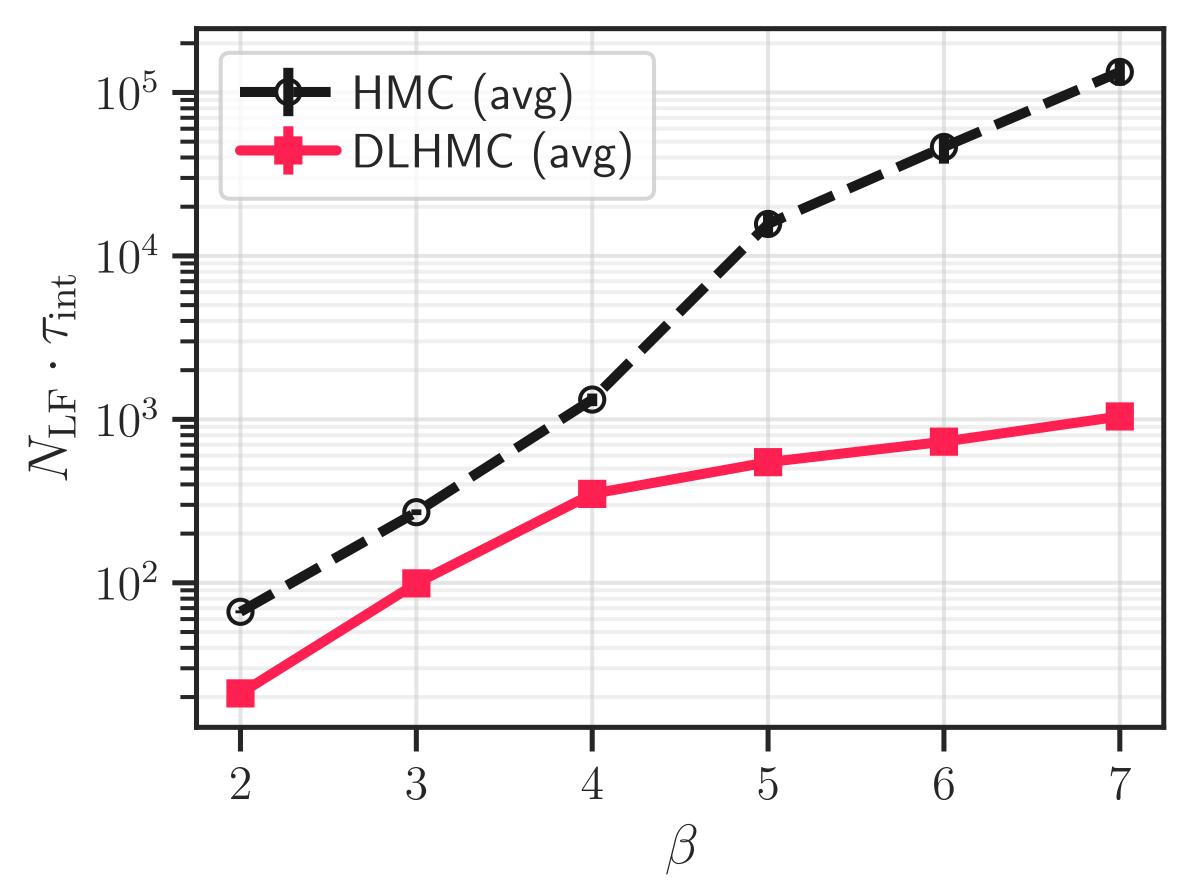


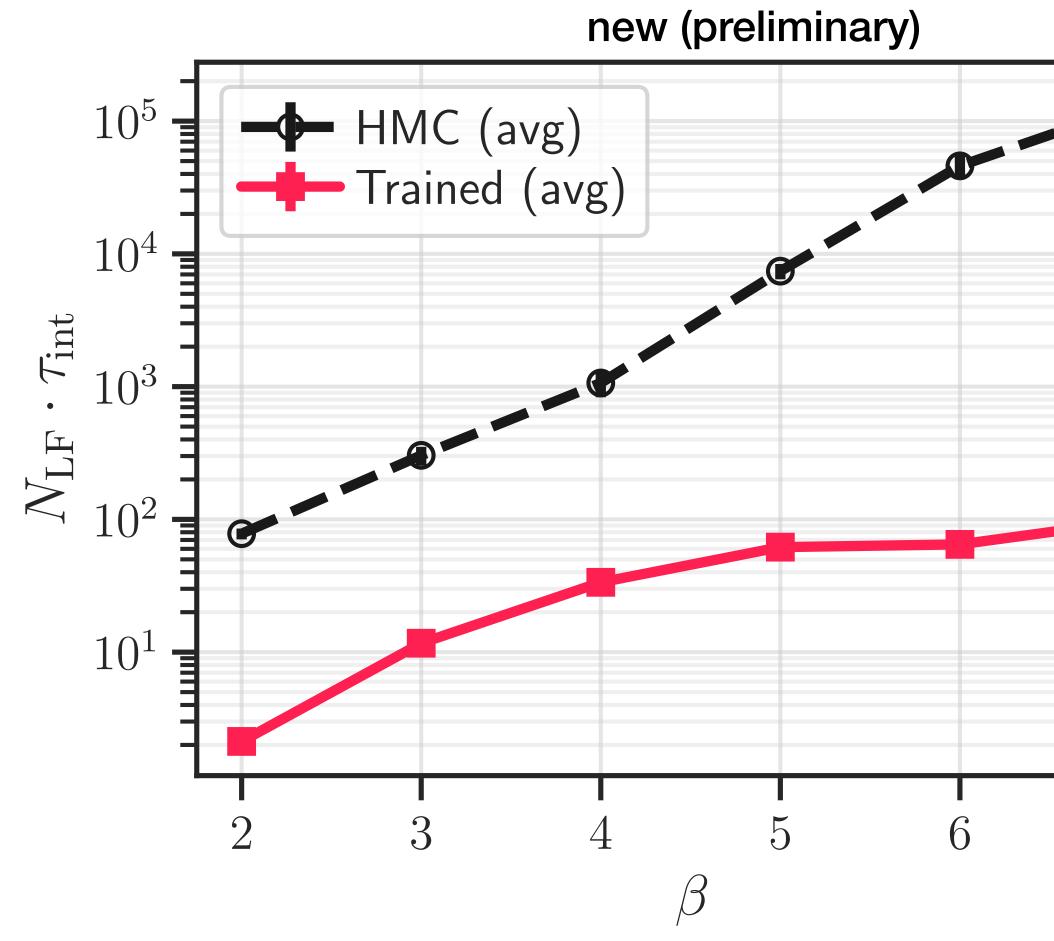
(a.) Deviation in the average plaquette, x_P

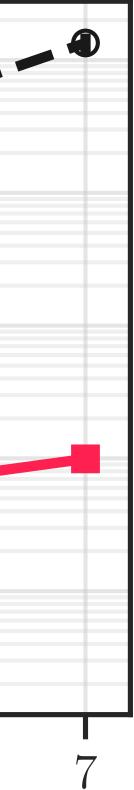


Comparison

previous (from arXiv:2105.03418)







Acknowledgements

Collaborators:

- Xiao-Yong Jin,
- Huge thank you to:
 - Yannick Meurice
 - Norman Christ
 - Akio Tomiya
 - Luchang Jin
 - Chulwoo Jung

- James C. Osborn
- Peter Boyle
- Taku Izubuchi
- Critical Slowing Down group (ECP)
- ALCF Staff + Datascience group

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

