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Critical Slowing Down
• Goal: Draw independent samples from target 
distribution .


‣ Generating independent gauge configurations is a 
major bottleneck for LatticeQCD.


• Topological Freezing 

‣ As we approach the continuum limit , the 
MCMC updates get stuck in sectors of fixed gauge 
topology.


• Number of trajectories needed to adequately 
sample different topological sectors increases 
exponentially
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• Accept / reject proposal  using MH: 
x′￼

xi+1 ←
x′￼ w/prob . A(ξ′￼|ξ) = min {1, p(ξ′￼)

p(ξ)
∂ξ′￼

∂ξ },

xi w/prob . 1 − A(ξ′￼|ξ)

• Introduce , then the target becomes:


      


• Evolve the joint  system using 
Hamilton’s equations along :


  ,   


• Leapfrog Integrator: 







v ∼ 𝒩(0,𝕀)

p(x, v) = p(x) ⋅ p(v) = e−Sx ⋅ e−vTv / 2

ξ ≡ (x, v)
H = const

·x =
∂H
∂v

·v =
∂H
∂v

ṽ ← v − ε ⋅ ∂xS(x) / 2
x′￼ ← x + εṽ
v′￼ ← ṽ − ε∂xS(x′￼) / 2

leapfrog

Introduce momentum ( )v

x0 x1

Hamiltonian Monte Carlo (HMC)

v
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Invertible NN

ζvk

• Introduce persistent direction  (forward, backward). 

• Target distribution:    

• kth-Leapfrog Layer:    


•Construct a trajectory by passing  through  
leapfrog layers.

d ∼ 𝒰( + , − )
p(ξ) = p(x) ⋅ p(v) ⋅ p(d)
ξk ≡ (xk, vk, ± ) ⟶ (x′￼′￼k , v′￼′￼k , ± ) ≡ ξk+1

ξk k ∈ {1, 2, …, NLF}

v′￼′￼k = Γ+(vk; ζvk
) ≡ vk ⊙ exp ( εk

v

2 sk
v(ζvk

))−
εk

v

2 [∂xS(xk) ⊙ exp (εk
vqk

v(ζvk
)) + tk

v(ζvk
)]

Leapfrog Layer



update:

( )

v

d = +

x′￼′￼k = Λ+(xk; ζvk
) ≡ xk ⊙ exp (εk

x sk
x(ζxk

)) + εk
x [v′￼k ⊙ exp (εk

xqk
x(ζxk

)) + tk
x(ζxk

)] 
update: 
( )

x

d = +

momentum scaling force scaling translation

ζvk
= [xk, ∂xS(xk)]

ζxk
= [m̄k ⊙ xk, vk]

(input)          (proposal)ξ0 → ξ1 → ⋯ → ξk → ξk+1 → ⋯ → ξNLF
≡ ξ′￼′￼



l2hmc: Generalized Leapfrog
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 update

• Leapfrog Step:  

1. Half-step  update:


 


2. Full-step, half-  update: 


 


3. Full-step, half-  update: 


 


4. Half-step  update: 


 

ξk → ξ′￼′￼k

v

v′￼k = Γ±(vk; ζvk
)

x

x′￼k = mk ⊙ xk + m̄k ⊙ Λ±(xk; ζxk
)

x

x′￼′￼k = m̄k ⊙ x′￼k + mk ⊙ Λ±(x′￼k; ζx′￼k
)

v

v′￼′￼k = Γ±(v′￼k; ζvk
)

 Invertible NN



 

 
 update

 update

l2hmc: Generalized Leapfrog

 

 
 update

 update∼ 𝒩(0,𝕀)

 

 
 update

 update



(loss fn)

ℒθ(x, x′￼′￼)

iterate!
 Invertible NN• Leapfrog Step:  

1. Half-step  update:


 


2. Full-step, half-  update: 


 


3. Full-step, half-  update: 


 


4. Half-step  update: 


 

ξk → ξ′￼′￼k

v

v′￼k = Γ±(vk; ζvk
)

x

x′￼k = mk ⊙ xk + m̄k ⊙ Λ±(xk; ζxk
)

x

x′￼′￼k = m̄k ⊙ x′￼k + mk ⊙ Λ±(x′￼k; ζx′￼k
)

v

v′￼′￼k = Γ±(v′￼k; ζvk
)



• We maximize the expected squared charge difference:


‣ 


‣        (squared charge diff.)


‣       (acceptance prob.)

ℒ(θ) = 𝔼p(ξ) [−δ𝒬2
ℝ(ξ′￼, ξ) ⋅ A(ξ′￼|ξ)]

δ𝒬2
ℝ(ξ′￼, ξ) = (𝒬ℝ(x′￼) − 𝒬ℝ(x))2

A(ξ′￼|ξ) = min {1, p(ξ′￼)
p(ξ)

∂ξ′￼

∂ξT }

• Link variables ,


 with .


• Wilson action: 

‣  , 


‣ 


• Topological charge:


‣ 


‣

Uμ(n) = eixμ(n) ∈ U(1)

xμ(n) ∈ [−π, π]

Sβ(x) = β∑
P

1 − cos xP

xP = xμ(n) + xν(n + ̂μ) − xμ(n + ̂ν) − xν(n)

𝒬ℝ = 1
2π ∑

P

sin xP ∈ ℝ

𝒬ℤ = 1
2π ∑

P
⌊xP⌋ ∈ ℤ discrete,


 hard to work with

2D  Lattice Gauge TheoryU(1)

continuous, 
differentiable

⌊xP⌋ = xP − 2π ⌊ xP + π
2π ⌋

xµ(n)

x⌫(n+ µ̂)

�xµ(n+ ⌫̂)

�x⌫(n)

n

Loss function, ℒ(θ)
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• Introduce an annealing schedule during the training phase:


‣ 


‣ ,


‣ 


• For  this helps to rescale (shrink) the energy barriers between isolated modes


‣ Allows sampler to explore previously inaccessible regions of the target distribution.


• Target distribution becomes:


‣ , for 

{γt}N
t=0

= {γ0, γ1, …, γN−1, γN},

γ0 < γ1 < ⋯ < γN ≡ 1

δγ ≡ ∥γt+1 − γt∥ ≪ 1

∥γt∥ < 1,

pt(x) ∝ e−γtSβ(x) t = 0,1,…, N

Simulated Annealing
ex: {0.1, 0.2, 0.3, …, 0.9, 1.0}

increasing

varied slowly



Training Algorithm

     construct 
trajectory

Compute loss 
  + backprop

 Metropolis-Hastings  
       accept/reject 

     re-sample     
      momentum 
   + direction

Training Algorithm
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Results
• Want to calculate 


• If we had independent configurations, we could 
approximate by


‣ 


• Accounting for autocorrelation: 


• We measure the performance of our model by 
looking at the integrated autocorrelation time,  of 
the topological charge .


• For generic HMC, it is known that  grows 
exponentially as  (critical slowing down)

⟨𝒪⟩ ∝ ∫ [𝒟x] 𝒪(x)e−S(x)

⟨𝒪⟩ ≃ 1
N

N

∑
n=1

𝒪(xn) → σ2 = 1
N Var [𝒪(x)]

σ2 =
τ𝒪

int

N Var [𝒪(x)]

τint
𝒬ℤ

τint
β → ∞
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(c.) Estimate of the integrated autocorrelation time  vs  
for both the trained model and generic HMC.

τint β

(d.) Plot of the topological charge history  vs MC Step𝒬ℤ



•Look at how different quantities evolve over the course of a trajectory (  leapfrog layers)


‣ See that the sampler artificially increases the energy during the first half of the trajectory
NLF

Interpretation
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New Results

2 3 4 5 6 7

Ø

102

103

104

105

N
L
F

·ø
in

t

HMC (avg)
DLHMC (avg)

104 105

NLF · Ntraj

102

N
L
F

·ø
in

t

55555
55

55

666
6

7

7

7

7

7

7

7

7

8

8

99

99
99

9

9

9
10

10
10

10

1010

12
12

12

12

12

13

13

15

15

Ø = 4.0

NLF =5

NLF =5, Ø 2 [1, 4]

NLF =6

NLF =7, Ø 2 [1, 4]

NLF =7

NLF =8

NLF =9

NLF =9, Ø 2 [1, 4]

NLF =10, Ø 2 [1, 4]

NLF =10

NLF =12

NLF =12, Ø 2 [1, 4]

NLF =13, Ø 2 [3, 4]

NLF =15

New networks!

this point would be here
≈

•Better performance: 10  previous results≈ ×

arXiv:2105.03418

PR
EL

IM
IN

AR
Y

https://arxiv.org/abs/2105.03418


2 3 4 5 6 7

Ø

102

103

104

105

N
L
F

·ø
in

t

HMC (avg)
DLHMC (avg)

2 3 4 5 6 7

Ø

101

102

103

104

105

N
L
F

·ø
in

t

HMC (avg)
Trained (avg)

previous (from arXiv:2105.03418) new (preliminary)

Comparison

https://arxiv.org/abs/2105.03418


Acknowledgements
‣ James C. Osborn  

‣ Peter Boyle


‣ Taku Izubuchi


‣ Critical Slowing Down group (ECP)


‣ ALCF Staff + Datascience group 

• Collaborators: 

‣ Xiao-Yong Jin,


• Huge thank you to:


‣ Yannick Meurice 


‣ Norman Christ


‣ Akio Tomiya


‣ Luchang Jin


‣ Chulwoo Jung

This research used resources of the Argonne 
Leadership Computing Facility, which is a 

DOE Office of Science User Facility supported 
under Contract DE-AC02-06CH11357.



 

 
 update

 update

0.0 0.2 0.4 0.6 0.8 1.0
MC Step £105

°2.5

0.0

2.5

5.0

QZ

Ø = 7

Trained

HMC

(c.) Estimate of the 
integrated autocorrelation 
time  of τint 𝒬ℤ ∈ ℤ
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A trainable framework for accelerating HMC on lattice 
gauge models.

(d.) Topological charge history

(a.) Deviation in the average 
plaquette,  over a single trajectory.xP
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(e.) Leapfrog Layer

(b.) Evolution of  𝒬ℝ =
1

2π ∑
P

sin xP ∈ ℝ
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