Leapfrog Layers

A Trainable Framework for Effective Topological Sampling

Sam Foreman, Xiao-Yong Jin, James C. Osborn
July, 2021

foremans@anl.gov
arXiv:2105.03418

bit.ly/12hmc-lattice2l

bit.ly/l12hmc-surprise

github.com/saforem2/12hmc-gcd

Argonne A

NATIONAL LABORATORY


http://bit.ly/l2hmc-surprise
https://arxiv.org/abs/2105.03418
https://www.github.com/saforem2/l2hmc-qcd
http://bit.ly/l2hmc-lattice21

@, histories
(hmc)

Critical Slowing Down

- Goal: Draw independent samples from target

distribution p(x).

~ Generating independent gauge configurations is a
major bottleneck for LatticeQCD.

- Topological Freezing

- As we approach the continuum limit f — o0, the

MCMC updates get stuck in sectors of fixed gauge
topology.

* Number of trajectories needed to adequately
sample different topological sectors increases
exponentially p=1
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Hamiltonian Monte Cario (HMC)

- Introduce v ~ 4(0,0), then the target becomes: - Accept / reject proposal x’ using MH:

X —viv/2

p(x,v) = px) - pv) =e e x"  w/prob. A(f’\cf):min{l,@ i },
- Evolve the joint & = (x, v) system using ikl P o
Hamilton’s equations along H = const: X; wiprob. 1 —A("[¢)
‘ oV 0 coproe (#1,v1)
- Leapfrog Integrator: Introduce momentum (v) (%o, %)

v < v—e. 05072
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Leapfrog Layer
- Introduce persistent direction d ~ % ( + , — ) (forward, backward).

- Target distribution: p(&) = p(x) - p(v) - p(d)

- kth-Leapfrog Layer: & = (x, v, £) — (x, v/, £) = &

(input) [50 - & o b oo éNLF = £ } (proposal)

- Construct a trajectory by passing ¢ through k € {1,2, ...,Nj g} | Invertible NN J
leapfrog layers. S

PreTey

{ momentum scaling } el force scaling  fp (translation }

Vi © exp (;s"(@D; [@S(x@ ® exp (eé{q(f@vk)) +

\ % {
update: V]g =1 +(Vk;
d=+) |

: XJQ' — A+(xk; é;vk) X, O exp <8}§%§(ka)> + & | v, © exp ( qx(éxk)> + t)lf(f_,’xk)l {ka = [m* o s Vk] J




12hmc: Generalized Leapfrog

- Leapfrog Step: fk — IQ’ A Invertible NN]

1. Half-step v update: " * |
V]Q — Fi(vka Cvk)

2. Full-step, half-x update:

x]é — mk @ Xk + n_/lk @ Ai(xk; ka)

3. Full-step, half-x update:

x| = 77410 X, + mk © Ai(x,g; gx,g) . L l
4. Half-step v update:

v =T=(v;8,)




12hmc: Generalized Leapfrog

| iterate! ..

- Leapfrog Step: &, — &

1. Half-step v update: " —/
v]é — Fi(vka gvk)

2. Full-step, half-x update:

X]; — mk @ xk + n_/lk @ Ai(xk; ka)
3. Full-step, half-x update:
— ok k +. 7.
X, =m"Qx,+m"OA (x,g,é:xlé)
4. Half-step v update:

v =06




2D U(1) Lattice Gauge Theory | Loss function, Z(6)

- Link variables U (n) = e e U(1), - We maximize the expected squared charge difference:

' ¢ ¢ / /
with x,(n) € [—z, z]. > g (0) =Lk p(&) [—5@%%(5 &) A € )]
W - , 2 .
Wilson action: N . 5@%(5’, E) = (@R(x ) — @R(x)) (squared charge diff.)
n: z,(n)

» Sx) = ) 1 —cosxp, ,
' ; ’ pe) | 9

» A(E'|€) = min (acceptance prob.)

A A b
»xp = x,(n) + x,(n+ i) — x,(n+0) — x,(n) P@) | gET
- Topological charge:
1 . 2 continuous, B="7
g @IR — or Z SIN Xp & R {@ differentiable} 5.0 .
Trained
P { 25 e HMC
| ' i 9z 00
discrete ; -
> — | ’
@Z 27 LXPJ € 7 ) hard to work with 95
W
P
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Simulated Annealing

* Introduce an annealing schedule during the training phase:

§
: k{Yt}ZO = { Vs V1> s INC1> TN | J Lex: {0.1,0.2,0.3, ...,0.9,1.0} |
Yo <y < <yy =1, [increasing ]
-8, = My =l < 1 varied slowly |

- For ||7,|| < 1, this helps to rescale (shrink) the energy barriers between isolated modes

- Allows sampler to explore previously inaccessible regions of the target distribution.

- Target distribution becomes:

' &?t(x) o e 78 fort = O,l,...,N}




input:
Loss function, Ly(&, &, A(E'[€))

Batch of i1nitial states,x

Learning rate schedule-&n}Nﬁm“

Ntraln

> b=

Annealing schedule, {7y},

5. Target distribution, pt(:z:) ox e~ t98(2)

Initialize weights @
for 0 S t < Ntrain .
resample v~ N(0,1)
resample d~ U(+,—)
construct &y = (xo,vo,do)
for0< k< Nygr:
| propose (leapfrog layer) & < &

compute A(£'|€) = mm{l p(é)) ggf}
update L < Ly(¢', €, A(£'[€))
backprop € + 60— a;VeLl

x’  with probability A(&’|€)

assign T4 < {x with probability (1 — A(&’[€)).

Training Algorithm

re-sample
momentum
+ direction

construct
trajectory

Compute loss
+ backprop

Metropolis-Hastings
accept/reject



Results

- Want to calculate (O) [ [9x] O(x)e 5@ 5.0

2.5

Qz
0.0

- If we had independent configurations, we could 25
approximate by

N
- (0) =+ ) O(x,) — 0% = - Var [O(x)]
n=1

. Accounting for autocorrelation: ¢ —Var [@ (x)]

- We measure the performance of our model by
looking at the integrated autocorrelation time, ;. of

the topological charge @.

- For generic HMGC, it is known that 7. .. grows

Uint
exponentially as f/ — oo (critical slowing down)

— HMC

Trained
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(d.) Plot of the topological charge history @, vs MC Step
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(c.) Estimate of the integrated autocorrelation time z; . vs [/
for both the trained model and generic HMC.




Interpretation

-Look at how different quantities evolve over the course of a trajectory (/V; i leapfrog layers)

> See that the sampler artificially increases the energy during the first half of the trajectory

A
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leapfrog step
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(a.) Deviation in the average plaquette, xp (b.) Evolution of the continuous charge @y, (c.) Evolution of the effective energy




B =4.0

Npr =5
Npr =5, B € [1,4]
Nirp =6

- &
t * o
\_ 7 Ny : L IS : 4
~~==this point would be here | Nep =9, 8¢ (14 @ ; S0 o
& o

Nip =10, 5 € [1,4] ¢ )4
R ;
Npp =12, 8 € [1,4] /0/6)’ s $ 8 $ ‘
Niw =13, B € [3,4] ® s $ 8
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New networks!

PRELIMINARY

. -Better performance: ~10 < previous results

10* 10°
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Comparison

previous (from arXiv:2105.03418) new (preliminary)

=¢= HMC (avg)
== Trained (avg)

=¢= HMC (avg)
—— DLHMC (avg)
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(e.) Leapfrog Layer

leapfrog step
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(a.) Deviation in the average
plaquette, x, over a single trajectory.
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(b.) Evolution of G = — 2 sinxp € R
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