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Outline

• Intro: 

o Normalizing flows

o sampling lattice gauge theories

• Masking patterns

• Frozen loops

• ML optimizations

This talk is about technical optimization of normalizing flows 
towards improving sampling efficiency in 3/4D
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[Image credit: Gurtej Kanwar, Dan Hackett]

Flow-based models learn a change-of-variables that transforms a known distribution to the desired one
[Rezende & Mohamed 1505.05880]

• Generate samples 𝑉 from prior distribution 𝑟(𝑉) such that

o is simple / cheap to draw samples from

o distribution density is known

• Transform prior variables with a flow 𝑓𝜃(𝑉) which

o is expressive

o is invertible

o has tractable Jacobian

• Optimize flow parameters 𝜃 to reproduce target distribution 𝑞 𝑈 ≈ 𝑝(𝑈)

Normalizing flows
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Coupling-based flows

• Introduce mask 𝑚𝑖 = {0,1} such that all elements are split to 

frozen and active sets:

element 𝑖 is frozen when 𝑚𝑖 = 0
element 𝑖 is active when 𝑚𝑖 ≠ 0

• Each coupling layer splits variables and transforms a 

subset of variables conditioned on a complementary subset

• Flow is a composition of coupling layers 𝒈𝒊

𝜙 = 𝑔𝑖 𝑧 = ቊ
𝑦𝑖 = 𝑥𝑖

𝑦𝑖 = 𝑓𝜃(𝑥𝑖)
, when 𝑚𝑖 = 0 −> frozen

, when 𝑚𝑖 = 1 −> active

parameters of transformations 𝜽 are functions (NN) of frozen variables
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Idea:

1) transform open plaquettes 𝑃𝜇𝜈 → 𝑃𝜇𝜈
′ = 𝑔 (𝑃𝜇𝜈|𝐼)

2) and map them to links 𝑈𝜇 → 𝑈𝜇
′ = 𝑃𝜇𝜈

′ 𝑃𝜇𝜈
† 𝑈𝜇

Normalizing flows produce invariant posterior distribution if

• Prior distribution is invariant

𝑟 𝑈 = 𝑟(Ω ∘ 𝑈)

• Flow transformation is equivariant

𝑓 𝑈 → 𝑓 Ω ∘ 𝑈 = Ω ∘ 𝑓(𝑈)

Gauge-equivariant flows

Lattice gauge transformation

𝑈𝜇 𝑥 → Ω ∘ 𝑈𝜇 𝑥 = Ω 𝑥 𝑈𝜇 𝑥 Ω x + 𝜇

𝑃𝜇𝜈(𝑥) → Ω 𝑥 𝑃𝜇𝜈(𝑥)Ω 𝑥 †

𝑃𝜇𝜈(𝑥)𝑈𝜇 𝑥 → Ω 𝑥 𝑃𝜇𝜈(𝑥)𝑈𝜇 𝑥 Ω x + 𝜇

One needs to derive plaquette 

mask from link mask 
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Gauge-equivariant coupling layer
P A F  F

1. Transform plaquettes with a kernel

Active links

2. Map updated plaquettes 

to links
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Algorithm for masking pattern

Requirements for masking algorithm:

• generalizable to Nd with few parameters

• allows propagation of information from vicinity of active link to the link

• allows to control sparsity and density

How can we generalize mask for higher dimensions? 

Is there better mask?
Active links are shown by black lines

Active plaquettes are shown by red color

Frozen plaquettes are either orange or not shown
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Algorithm for masking pattern

Idea: generalize checkerboard mask 

• set directions of active links 

• every link has a phase

• moving in any direction changes phase by step_mu

• active links have phase mod width = 0

directions= [1, 2], steps = [1, 0, 0] directions= [2], steps = [1, 0, 0] directions= [2], steps = [1, 2, 0] directions= [1], steps = [1, 2, 2]

Active links are shown by black lines

more sparse than checkboard
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Algorithm for Loop mask

The algorithm must prevent canceling active links out

and be valid for any link mask!

Idea: count how many active links contain every loop

Idea: any loop containing no active 

links will be frozen. 

Use properties of NaNs.
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Algorithm for Loop mask

split active link mask to samples 

such that every sample contains 

only one active link

compute loops on every sample

sum samples
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Frozen loops

2x1 loop chair crownplaquette

Not all loops can be constructed from plaquettes due to masking!

But, bigger loops can be constructed from plaquettes, 2x1 loops, chairs and crowns!
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Convolutional layer in 4D

Idea: 

Convolution layer in 4D is sum 

of convolution layers in 3D

Depending on parameters naive implementation in PyTorch

shows a slowing down for 20%-50% comparing with PyTorch 3D

Convolutions on GPU (Nvidia).

See implementations

• https://github.com/boydad/pytorch_conv4D

• https://github.com/funkey/conv4d

• https://github.com/timothygebhard/pytorch-conv4d

• https://github.com/pvjosue/pytorch_convNd
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Factorized convolutions

Factorized convolutions:

• fewer parameters

• fewer multiplications

• easier to train

• no need for 4D convolution

Idea: matrix is outer product of two vectors
3 6 9
4 8 12
5 10 15

=
3
4
5

∙ 1 2 3

see CP decomposition and tucker 

decomposition for details; and 

review on decompositions

https://arxiv.org/pdf/1906.06196
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Some other optimizations
Coupling transformation

• Rational quadratic spline with bias

𝑦𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑅𝑄𝑆 𝑥𝑎𝑐𝑡𝑖𝑣𝑒 𝑁𝑁(𝑥𝑓𝑟𝑜𝑧𝑒𝑛)) + 𝑁𝑁(𝑥𝑓𝑟𝑜𝑧𝑒𝑛) Optimizer regularization

• Long training can cause instability due to 

Adam optimizer (regularize or use amsgrad)

Multi-update

• Update link several times using 

all active plaquettes

Scheduler policy

• Long training with several 

decreasing learning rate is efficient
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Thank you for watching!

• Development of a flow-based model for
lattice gauge theory in 3/4D required a set
of optimizations

• All optimizations proposed here may be
used for other models

Conclusions 
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