# Lie group integrators and efficient integration of gradient flow 

Alexei Bazavov
Michigan State University

Lattice 2021
MIT July 26 - 302021


## Classical explicit Runge-Kutta methods

$$
\frac{d y}{d t}=f(t, y)
$$

```
Algorithm 1 Explicit classical \(s\)-stage Runge-Kutta method
    1: for \(\mathrm{i}=1, \ldots, \mathrm{~s}\) do
    2: \(\quad y_{i}=y_{t}+h \sum_{j=1}^{i-1} a_{i j} k_{j}\)
    \(\triangleright a_{i, j \geqslant i}=0\)
    3: \(\quad k_{i}=f\left(t+h c_{i}, y_{i}\right)\)
    \(\triangleright c_{1}=0\)
    4: end for
    5: \(y_{t+h}=y_{t}+h \sum_{i=1}^{s} b_{i} k_{i}\)
```

| $c_{2}$ | $a_{21}$ |  |  |
| :--- | :--- | :--- | :--- |
| $c_{3}$ | $a_{31}$ | $a_{32}$ |  |
|  | $b_{1}$ | $b_{2}$ | $b_{3}$ |

## Classical 2N-storage Runge-Kutta methods

$$
\begin{aligned}
& \begin{array}{l}
\text { Algorithm } 22 N \text {-storage explicit classical } s \text {-stage Runge-Kutta } \\
\text { method }
\end{array} \\
& \text { 1: } y_{0}=y_{t} \\
& \text { 2: for } \mathrm{i}=1, \ldots, \mathrm{~s} \text { do } \\
& \text { 3: } \Delta y_{i}=A_{i} \Delta y_{i-1}+h f\left(y_{i-1}\right) \\
& \text { 4: } \quad y_{i}=y_{i-1}+B_{i} \Delta y_{i} \\
& \text { 5: end for } \\
& \text { 6: } y_{t+h}=y_{s} \\
& a_{i j}= \begin{cases}A_{1}=0 \\
B_{j+1}, & j=i-1, \\
0, & \text { otherwise, }\end{cases} \\
& b_{i}= \begin{cases}A_{i+1} b_{i+1}+B_{i}, & i<s, \\
B_{i}, & i=s,\end{cases}
\end{aligned}
$$

## The Williamson curve



## Structure-preserving integration

$$
\frac{d Y}{d t}=F(Y) Y
$$

- Instead of $y \rightarrow y+h f$ we want $\quad Y \rightarrow \exp (h F) Y$
- How do we interpret e.g. $y_{3}=y_{t}+h\left(a_{31} k_{1}+a_{32} k_{2}\right)$ ?
- $Y_{3}=\exp \left(h\left(a_{31} K_{1}+a_{32} K_{2}\right)\right) Y_{t}$ ?
- $Y_{3}=\exp \left(h a_{31} K_{1}\right) \exp \left(h a_{32} K_{2}\right) Y_{t}$ ?
- $Y_{3}=\exp \left(h a_{32} K_{2}\right) \exp \left(h a_{31} K_{1}\right) Y_{t}$ ?

Keep single exponential per stage, but add commutators, e.g. $\tilde{c}\left[K_{1}, K_{2}\right]$

Munthe-Kaas, 1995, 1998


$$
\exp \left(h\left(\alpha_{2 ; 31} K_{1}+\alpha_{2 ; 32} K_{2}\right)\right) \exp \left(h\left(\alpha_{1 ; 31} K_{1}+\alpha_{1 ; 32} K_{2}\right)\right)
$$

Celledoni, Marthinsen, Owren, 2006

## Third-order integrator of Lüscher, 1006.4518

$$
\begin{aligned}
& \dot{V}_{t}=Z\left(V_{t}\right) V_{t}, \\
& W_{0}=V_{t}, \\
& W_{1}=\exp \left\{\frac{1}{4} Z_{0}\right\} W_{0}, \\
& W_{2}=\exp \left\{\frac{8}{9} Z_{1}-\frac{17}{36} Z_{0}\right\} W_{1}, \\
& V_{t+\epsilon}=\exp \left\{\frac{3}{4} Z_{2}-\frac{8}{9} Z_{1}+\frac{17}{36} Z_{0}\right\} W_{2}, \\
& Z_{i}=\epsilon Z\left(W_{i}\right), \quad i=0,1,2 .
\end{aligned}
$$

If you are curious about the derivation:

Bazavov, Chuna, 2101.05320

- Is this coefficient scheme unique?
- Are there higher order ones?


## Higher order integrators?

- Most codes seem to use the original Lüscher, 1006.4518 integrator
- Variable step size scheme based on Lüscher's, e.g.

Fritzsch, Ramos, 1301.4388 are also in use - not covered here

- Some evidence of fourth-order, e.g. Cè et al., 1506.06052

> Alternative RK methods for integrating (B.1) are given by the Crouch-Grossman integrators [41, 42]. They are a special case of so-called commutator-free Lie group methods [43]. The third order algorithm described in Ref. [12] belongs to this class. The conditions which the coefficients need to satisfy, order by order, are computable up to arbitrary order [44]. They are given by the order conditions for a classical RK method, plus specific extra conditions. At fourth order, however, we did not find a coefficient scheme with the useful properties of the Lüscher's integrator in terms of exponential reusing.

## 2 N -storage commutator-free Lie group method

- It has been recently shown that 2 N -storage classical Runge-Kutta schemes of Williamson type are automatically structure-preserving integrators of the same order, 2007.04225:
- proved at third order
- conjectured for higher order
- The coefficient scheme of Lüscher, 1006.4518 is equivalent to the classical scheme \#6 in Williamson, 1980

```
\(\overline{\text { Algorithm } 62 N \text {-storage } s \text {-stage commutator-free Runge-Kutta }}\)
Lie group method
    1: \(Y_{0}=Y_{t}\)
    2: for \(\mathrm{i}=1, \ldots, \mathrm{~s}\) do
    3: \(\Delta Y_{i}=A_{i} \Delta Y_{i-1}+h F\left(Y_{i-1}\right) \quad \triangleright A_{1}=0\)
    4: \(\quad Y_{i}=\exp \left(B_{i} \Delta Y_{i}\right) Y_{i-1}\)
    5: end for
    6: \(Y_{t+h}=Y_{s}\)
```


## Gradient flow in Grid: qcd/smearing/WilsonFlow.h

```
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
    GaugeField Z(U.Grid());
    GaugeField tmp(U.Grid());
    SG.deriv(U, Z);
    Z *= 0.25
    Gimpl::update_field(Z, U, -2.0*epsilon);
    // Z0 = 1/4 * F(U)
// U = W1 = exp(ep*Z0)*W0
    Z *= -17.0/8.0;
    SG.deriv(U, tmp); Z += tmp;
    Z *= 8.0/9.0;
    Gimpl::update_field(Z, U, -2.0*epsilon);
// -17/32*Z0 +Z1
// Z = -17/36*Z0 +8/9*Z1
// U_= W2 = exp(ep*Z)*W1
    Z *= -4.0/3.0;
    SG.deriv(U, tmp); Z += tmp;
    Z *= 3.0/4.0;
    Gimpl::update_field(Z, U, -2.0*epsilon);
// 4/3*(17/36*Z0 -8/9*Z1) +Z2
// Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
}
```


## Gradient flow in Grid: qcd/smearing/WilsonFlow.h

```
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
    GaugeField Z(U.Grid());
    GaugeField tmp(U.Grid());
    Z *= 0.0;
    SG.deriv(U, tmp); Z += tmp;
    tmp = Z;
    tmp *= 0.25; // Z0 = 1/4 * F(U)
    Gimpl::update_field(tmp, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
    Z *= -17.0/32.0;
    SG.deriv(U, tmp); Z += tmp;
    tmp = Z;
    tmp *= 8.0/9.0;
    Gimpl::update_field(tmp, U, -2.0*epsilon);
// -17/32*Z0 +Z1
        // Z = -17/36*Z0 +8/9*Z1
        // U_= W2 = exp(ep*Z)*W1
    Z *= -32.0/27.0;
    SG.deriv(U, tmp); Z += tmp;
    tmp = Z;
    tmp *= 3.0/4.0; // z = 17/36*Z0 -8/9*Z1 +3/4*Z2
    Gimpl::update_field(tmp, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
}
```


## Gradient flow in Grid: qcd/smearing/WilsonFlow.h

```
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
    GaugeField Z(U.Grid());
    GaugeField tmp(U.Grid());
#define RK STAGES 3
    double A[RK_STAGES] = {0,-17/32.,-32/27.};
    double B[RK_STAGES] = {1/4.,8/9.,3/4.};
    Z *= A[0];
    SG.deriv(U, tmp); Z += tmp;
    tmp = Z;
    tmp *= B[0]; // Z0 = 1/4 * F(U)
    Gimpl::update_field(tmp, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
    Z *= A[1];
    SG.deriv(U, tmp); Z += tmp;
    tmp = Z;
    tmp *= B[1]; // Z = -17/36*Z0 +8/9*Z1
    Gimpl::update_field(tmp, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
    Z *= A[2];
    SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
    tmp = Z;
    tmp *= B[2]; // z = 17/36*Z0 -8/9*Z1 +3/4*Z2
    Gimpl::update_field(tmp, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
}
```


## Gradient flow in Grid: qcd/smearing/WilsonFlow.h

```
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
    GaugeField Z(U.Grid());
    GaugeField tmp(U.Grid());
#define RK_STAGES 3
    double A[RK_STAGES] = {0,-17/32.,-32/27.};
    double B[RK_STAGES] = {1/4.,8/9.,3/4.};
    for( int i=0; i<RK_STAGES; i++ ) {
        Z *= A[i];
        SG.deriv(U, tmp); Z += tmp;
        tmp = Z;
        tmp *= B[i];
        Gimpl::update_field(tmp, U, -2.0*epsilon);
    }
}
```


## Gradient flow in Grid: qcd/smearing/WilsonFlow.h

```
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
    GaugeField Z(U.Grid());
    GaugeField tmp(U.Grid());
#define RK_STAGES 3
    double A[RK_STAGES] = {0,-5/9.,-153/128.};
    double B[RK_STAGES] = {1/3.,15/16.,8/15.};
    for( int i=0; i<RK_STAGES; i++ ) {
        Z *= A[i];
        SG.deriv(U, tmp); Z += tmp;
        tmp = Z;
        tmp *= B[i];
        Gimpl::update_field(tmp, U, -2.0*epsilon);
    }
}
```


## Gradient flow in Grid: qcd/smearing/WilsonFlow.h

```
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
    GaugeField Z(U.Grid());
    GaugeField tmp(U.Grid());
#define RK_STAGES 5
    double A[RK_STAGES] = {0,
                        -567301805773/1357537059087.,
                        -2404267990393/2016746695238.,
                        -3550918686646/2091501179385.,
                                -1275806237668/842570457699.};
    double B[RK_STAGES] = {1432997174477/9575080441755.,
                                    5161836677717/13612068292357..
                                    1720146321549/2090206949498.,
                                    3134564353537/4481467310338.,
                                    2277821191437/14882151754819.};
    for( int i=0; i<RK_STAGES; i++ ) {
        Z *= A[i];
        SG.deriv(U, tmp); Z += tmp;
        tmp = Z;
        tmp *= B[i];
        Gimpl::update_field(tmp, U, -2.0*epsilon);
    }
}
```


## Gradient flow in Grid: qcd/smearing/WilsonFlow.h

```
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
    GaugeField Z(U.Grid());
    GaugeField tmp(U.Grid());
#define RK STAGES 6
    double A[RK_STAGES] = {0,-0.737101392796,-1.634740794341,
                -0.744739003780,-1.469897351522,-2.813971388035};
    double B[RK_STAGES] = {0.032918605146,0.823256998200,0.381530948900,
                        0.200092213184,1.718581042715,0.27};
    for( int i=0; i<RK_STAGES; i++ ) {
        Z *= A[i];
        SG.deriv(U, tmp); Z += tmp;
        tmp = Z;
        tmp *= B[i];
        Gimpl::update_field(tmp, U, -2.0*epsilon);
    }
}
```

Berland,
Bogey,
Bailly,

4th order

## LO error for third-order schemes



- Leading order, $O\left(h^{3}\right)$, coefficient of the integration error in the norm of the gauge field itself vs the coefficient scheme

- Leading order, $O\left(h^{3}\right)$, coefficient of the integration error in the energy density vs the coefficient scheme


## Error in the energy density vs computational cost



- Ensembles with $a=0.15,0.12$ and 0.09 fm
- Two third-order and two fourth-order schemes
- Non-monotonicity due to zero crossing of the error (i.e. some schemes approach the solution from above and some from below)



## Conclusion

- 2 N -storage classical Runge-Kutta methods of Williamson type are automatically structure-preserving integrators of the same order
- Must be easy to introduce this type of integrators into existing codes, e.g. Grid
- Implemented in MILC:
- RKMK (with commutators): third, fourth, fifth and eighth order
- Low-storage: third order with arbitrary coefficients, fourth order with Carpenter, Kennedy and Berland, Bogey, Bailly coefficients
- Variable steps size third(second) order pairs with arbitrary coefficients and Bogacki-Shampine type
- Possible gains depend on the application, for scale setting on the MILC ensembles low-storage fourth order works best

