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and the so called clover expression constructed as a linear com-
bination of several plaquettes forming the shape of a clover leaf:

Cx, µ,⌫ =
i

8

⇣
Qx, ⌫, µ � Qx, µ,⌫

⌘
(3)

where Qx, µ,⌫ = Px, µ,⌫ + Px,⌫,�µ + Px,�µ,�⌫ + Px,�⌫, µ.
The simplest gauge action is the Wilson action [1] that in-

cludes only the plaquette term (for convenience we drop the
factor 1/g2

0 in the definition):

S Wilson = 2
X

x

X

µ<⌫

ReTr(1 � Px, µ,⌫). (4)

To suppress lattice discretization e↵ects one can construct im-
proved actions such as, for instance, the tree-level Symanzik-
improved gauge action that includes the plaquette and rectangle
terms [5]:

S Symanzik =
5
3

S Wilson �
1
6

X

x

X

µ,⌫

ReTr(1 � Rx, µ,⌫). (5)

The clover action is

S clover =
1
2

X

x

X

µ,⌫

ReTr(Cx, µ,⌫Cx, µ,⌫) (6)

and another variant of an improved action can be constructed as
a linear combination of the plaquette and clover terms.

To smoothen the fields and suppress ultraviolet fluctuations
Ref. [2] suggested evolving the gauge fields Ux, µ with the fol-
lowing gradient flow equation:

dVx, µ

dt
= �
n
@x, µS

f (t)
o

Vx, µ, Vx, µ(t = 0) = Ux, µ (7)

where the di↵erential operator @x, µ acts on a function of SU(3)
group elements as defined in Ref. [2] and S

f (t) is the lattice
action evaluated using the evolved gauge link variables V(t).
We refer to the gradient flow as the Wilson flow when S

f =
S Wilson is used in the flow equation, and as the Symanzik flow
when S

f = S Symanzik. The flow time t has dimensions of lattice
spacing squared.

One of the widespread applications of gradient flow in lattice
gauge theory is scale setting, i.e. determination of the lattice
spacing in physical units for a given lattice ensemble. In this
case the flow is run until the flow time t = w

2
0 [6] at which

"
t

d

dt
t
2hS o(t)i

#

t=w
2
0

= Const (8)

and typically Const = 0.3 is chosen. The lattice spacing is then
set by using the value of the w0-scale in physical units, w

phys

0 .
Eq. (8) is an improved version of the original proposal where
the action itself rather than its derivative was used [2]:

t
2hS o(t)i

���
t=t0
= Const. (9)

The observable used for the scale setting in Eq. (8) is the action
density S

o, not necessarily the same as S
f in the flow equa-

tion (7). As has been discussed in Ref. [7] di↵erent combina-
tions of the flow action and the observable result in di↵erent
dependence on the lattice spacing. Here we consider S Wilson

and S Symanzik for the flow and S Wilson, S Symanzik and S clover for
the observable.

3. Classical Runge-Kutta methods

Consider a first-order di↵erential equation for a function y(t)

dy

dt
= f (t, y), (10)

and the initial condition y(t = 0) given. An s-stage explicit
Runge-Kutta (RK) method that propagates the numerical ap-
proximation to the solution yt of Eq. (10) at time t to time t + h

is given in Algorithm 1 [8, 9].

Algorithm 1 Explicit classical s-stage Runge-Kutta method
1: for i=1,. . . ,s do
2: yi = yt + h

P
i�1
j=1 ai jk j . ai, j>i = 0

3: ki = f (t + hci, yi) . c1 = 0
4: end for
5: yt+h = yt + h

P
s

i=1 biki

The self-consistency conditions require

ci =

i�1X

j=1

ai j. (11)

We refer to this method as classical RK method to distinguish it
from the Lie group integrators discussed in Sec. 4. To provide
an order of accuracy p the coe�cients ai j, bi need to satisfy
the order conditions. The order conditions for a classical RK
method of third-order global accuracy are given in Appendix
A. It is convenient to represent the set of coe�cients ai j, bi, ci

as a Butcher tableau, for instance, for a 3-stage method (the
first entry with c1 = 0 is omitted):

c2 a21

c3 a31 a32

b1 b2 b3

(12)

The nodes ci in the left column describe the time points at which
the stages are evaluated, the ai j in the middle give the weights

of the right hand side function for each stage, and the bottom
row gives the weights for the final stage of the method. If the
method is explicit each stage can only depend on the previous
ones and therefore the Butcher tableau has a characteristic tri-
angular shape.

For a 3-stage third-order classical RK method there are four
order conditions and six independent coe�cients, thus, these
methods belong to a two-parameter family. Often, the coef-
ficients c2, c3 are chosen as free parameters and the rest are
expressed through them, as given in Eqs. (A.5)–(A.10).

In the following the discussion is restricted to autonomous
problems where the right hand side of Eq. (10) does not explic-
itly depend on time. Extension to non-autonomous problems is
trivial.

3.1. 2N-storage classical RK methods

As is clear from Algorithm 1, to compute yt+h at the final step
one needs to store ki, i = 1, . . . , s (the right hand side evalua-
tions) from all s stages of the method. It was shown in Ref. [10]
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one needs to store ki, i = 1, . . . , s (the right hand side evalua-
tions) from all s stages of the method. It was shown in Ref. [10]
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that a classical RK method may be written in a form where only
the values from the previous stage are used. Therefore only
two quantities need to be stored at all times, independent of
the number of stages of the method. RK methods with such a
property are called low-storage methods. A number of di↵erent
types of low-storage methods have been developed in the liter-
ature, e.g., Refs. [11, 12]. For the later discussion of Lie group
methods in Sec. 4 we focus on the methods of Ref. [10], which
are also called 2N-storage methods1.

Given an s-stage RK method one can express its coe�cients
through another set of coe�cients Ai, Bi, i = 1, . . . , s such that

ai j =

8>>>>><
>>>>>:

Aj+1ai, j+1 + Bj, j < i � 1,
Bj, j = i � 1,
0, otherwise,

(13)

bi =

8>><
>>:

Ai+1bi+1 + Bi, i < s,

Bi, i = s,
(14)

and for explicit methods necessarily A1 = 0. A 2N-storage s-
stage explicit classical RK method is given in Algorithm 2.

Algorithm 2 2N-storage explicit classical s-stage Runge-Kutta
method

1: y0 = yt

2: for i=1,. . . ,s do
3: �yi = Ai�yi�1 + h f (yi�1) . A1 = 0
4: yi = yi�1 + Bi�yi

5: end for
6: yt+h = ys

For a 3-stage third-order method expressing the original ai j,
bi coe�cients through Ai, Bi leads to an additional, fifth, order
condition for ai j, bi that was found in Ref. [10]. This means
that the coe�cients of a 2N-storage scheme now form a one-
parameter family. One can express the fifth order condition as
an implicit function of c2 and c3 [10]:

c
2
3(1 � c2) + c3

 
c

2
2 +

1
2

c2 � 1
!
+

 
1
3
� 1

2
c2

!
= 0. (15)

This implicit function is shown in Fig. 1.
While almost any point in the plane (except c2 = c3 = 1/3)

corresponds to a possible 3-stage third-order classical RK co-
e�cient scheme, only the values on the curve correspond to
classical RK methods that can be rewritten in the 2N-storage
format, Algorithm 2. The plot shown in Fig. 1 first appeared
in Ref. [10] therefore we refer to it as the Williamson curve.
To find coe�cients for a 3-stage third-order 2N-storage scheme
one can proceed in the following way:

• Pick a value of c2 in the allowed range.

• Solve Eq. (15) for c3 and pick one of the branches.

1Unlike other types of low-storage methods (e.g., 2R-, 2S -, 3R-, 3S -, etc.)
the 2N-storage methods have special properties that turned out to be related to
Lie group integrators [4].
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Figure 1: The Williamson curve, i.e. the set of values of c2 and c3 coe�-
cients for which the 3-stage third-order classical RK schemes can be written in
the 2N-storage format. The symbols (triangles, box and circle) correspond to
rational solutions. The blue box and the red circle are the schemes that are dis-
cussed in more detail later. W6 and W7 labels indicate the original numbering
in Ref. [10]. There is a reflection symmetry along the c2 + c3 = 1 line.

• Express all ai j, bi coe�cients in terms of c2 and c3 using
Eqs. (A.5)–(A.10).

• Find Ai, Bi by inverting the relations given in Eqs. (13),
(14).

The symbols on the Williamson curve are the points where
c2 and c3 (and all the other coe�cients) have rational values.
These values are summarized in Table B.2 in Appendix B. The
schemes labeled with the blue box and red circle in the figure
play special role in our discussion later. We denote them:

• RK3W6: c2 = 1/4, c3 = 2/3,

• RK3W7: c2 = 1/3, c3 = 3/4,

where “RK3” means that the method is of the third order of
global accuracy and “W6” and “W7” preserve the numbering
used in Ref. [10] where these 2N-storage schemes first ap-
peared.

For 2N-storage schemes with more than three stages and
orders higher than three there are no analytic solutions avail-
able. The coe�cients can be found by expressing the order
conditions through the coe�cients Ai, Bi and solving the re-
sulting system of non-linear equations numerically. Multiple
2N-storage schemes have been designed in this way in the lit-
erature [13, 14, 15, 16, 17, 18, 19, 20].

3.2. Variable step size methods

In the previous sections we considered integration methods
that operate with fixed step size. If an estimate of the local
error is available one can adjust the step size during the inte-
gration. Methods with such a property are known as variable

step size or adaptive integrators. To construct a variable step
size method one uses two schemes of di↵erent order simultane-
ously. The di↵erence between the two solutions after one step
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that a classical RK method may be written in a form where only
the values from the previous stage are used. Therefore only
two quantities need to be stored at all times, independent of
the number of stages of the method. RK methods with such a
property are called low-storage methods. A number of di↵erent
types of low-storage methods have been developed in the liter-
ature, e.g., Refs. [11, 12]. For the later discussion of Lie group
methods in Sec. 4 we focus on the methods of Ref. [10], which
are also called 2N-storage methods1.

Given an s-stage RK method one can express its coe�cients
through another set of coe�cients Ai, Bi, i = 1, . . . , s such that

ai j =

8>>>>><
>>>>>:

Aj+1ai, j+1 + Bj, j < i � 1,
Bj, j = i � 1,
0, otherwise,

(13)

bi =

8>><
>>:

Ai+1bi+1 + Bi, i < s,

Bi, i = s,
(14)

and for explicit methods necessarily A1 = 0. A 2N-storage s-
stage explicit classical RK method is given in Algorithm 2.

Algorithm 2 2N-storage explicit classical s-stage Runge-Kutta
method

1: y0 = yt

2: for i=1,. . . ,s do
3: �yi = Ai�yi�1 + h f (yi�1) . A1 = 0
4: yi = yi�1 + Bi�yi

5: end for
6: yt+h = ys

For a 3-stage third-order method expressing the original ai j,
bi coe�cients through Ai, Bi leads to an additional, fifth, order
condition for ai j, bi that was found in Ref. [10]. This means
that the coe�cients of a 2N-storage scheme now form a one-
parameter family. One can express the fifth order condition as
an implicit function of c2 and c3 [10]:

c
2
3(1 � c2) + c3

 
c

2
2 +

1
2

c2 � 1
!
+

 
1
3
� 1

2
c2

!
= 0. (15)

This implicit function is shown in Fig. 1.
While almost any point in the plane (except c2 = c3 = 1/3)

corresponds to a possible 3-stage third-order classical RK co-
e�cient scheme, only the values on the curve correspond to
classical RK methods that can be rewritten in the 2N-storage
format, Algorithm 2. The plot shown in Fig. 1 first appeared
in Ref. [10] therefore we refer to it as the Williamson curve.
To find coe�cients for a 3-stage third-order 2N-storage scheme
one can proceed in the following way:

• Pick a value of c2 in the allowed range.

• Solve Eq. (15) for c3 and pick one of the branches.

1Unlike other types of low-storage methods (e.g., 2R-, 2S -, 3R-, 3S -, etc.)
the 2N-storage methods have special properties that turned out to be related to
Lie group integrators [4].
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Figure 1: The Williamson curve, i.e. the set of values of c2 and c3 coe�-
cients for which the 3-stage third-order classical RK schemes can be written in
the 2N-storage format. The symbols (triangles, box and circle) correspond to
rational solutions. The blue box and the red circle are the schemes that are dis-
cussed in more detail later. W6 and W7 labels indicate the original numbering
in Ref. [10]. There is a reflection symmetry along the c2 + c3 = 1 line.

• Express all ai j, bi coe�cients in terms of c2 and c3 using
Eqs. (A.5)–(A.10).

• Find Ai, Bi by inverting the relations given in Eqs. (13),
(14).

The symbols on the Williamson curve are the points where
c2 and c3 (and all the other coe�cients) have rational values.
These values are summarized in Table B.2 in Appendix B. The
schemes labeled with the blue box and red circle in the figure
play special role in our discussion later. We denote them:

• RK3W6: c2 = 1/4, c3 = 2/3,

• RK3W7: c2 = 1/3, c3 = 3/4,

where “RK3” means that the method is of the third order of
global accuracy and “W6” and “W7” preserve the numbering
used in Ref. [10] where these 2N-storage schemes first ap-
peared.

For 2N-storage schemes with more than three stages and
orders higher than three there are no analytic solutions avail-
able. The coe�cients can be found by expressing the order
conditions through the coe�cients Ai, Bi and solving the re-
sulting system of non-linear equations numerically. Multiple
2N-storage schemes have been designed in this way in the lit-
erature [13, 14, 15, 16, 17, 18, 19, 20].

3.2. Variable step size methods

In the previous sections we considered integration methods
that operate with fixed step size. If an estimate of the local
error is available one can adjust the step size during the inte-
gration. Methods with such a property are known as variable

step size or adaptive integrators. To construct a variable step
size method one uses two schemes of di↵erent order simultane-
ously. The di↵erence between the two solutions after one step
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• Extra order condition 
for three-stage third-
order 2N-storage 
Runge-Kutta methods 
(Williamson, 1980)
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• Express all ai j, bi coe�cients in terms of c2 and c3 using
Eqs. (A.5)–(A.10).

• Find Ai, Bi by inverting the relations given in Eqs. (13),
(14).

The symbols on the Williamson curve are the points where
c2 and c3 (and all the other coe�cients) have rational values.
These values are summarized in Table B.2 in Appendix B. The
schemes labeled with the blue box and red circle in the figure
play special role in our discussion later. We denote them:

• RK3W6: c2 = 1/4, c3 = 2/3,

• RK3W7: c2 = 1/3, c3 = 3/4,

where “RK3” means that the method is of the third order of
global accuracy and “W6” and “W7” preserve the numbering
used in Ref. [10] where these 2N-storage schemes first ap-
peared.

For 2N-storage schemes with more than three stages and
orders higher than three there are no analytic solutions avail-
able. The coe�cients can be found by expressing the order
conditions through the coe�cients Ai, Bi and solving the re-
sulting system of non-linear equations numerically. Multiple
2N-storage schemes have been designed in this way in the lit-
erature [13, 14, 15, 16, 17, 18, 19, 20].

3.2. Variable step size methods

In the previous sections we considered integration methods
that operate with fixed step size. If an estimate of the local
error is available one can adjust the step size during the inte-
gration. Methods with such a property are known as variable

step size or adaptive integrators. To construct a variable step
size method one uses two schemes of di↵erent order simultane-
ously. The di↵erence between the two solutions after one step
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dY
dt

= F(Y )Y

• Instead of      we want    

• How do we interpret e.g. ? 

•  ? 

•  ? 

•  ?

y → y + hf Y → exp(hF)Y
y3 = yt + h(a31k1 + a32k2)

Y3 = exp(h(a31K1 + a32K2))Yt

Y3 = exp(ha31K1)exp(ha32K2)Yt

Y3 = exp(ha32K2)exp(ha31K1)Yt

Keep single exponential per 
stage, but add commutators, 

e.g.  
Munthe-Kaas, 1995, 1998

c̃[K1, K2]

Multiple exponentials with multiple terms but no commutators, e.g. 
 

Celledoni, Marthinsen, Owren, 2006

exp(h(α2;31K1 + α2;32K2))exp(h(α1;31K1 + α1;32K2))
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Third-order integrator of Lüscher, 1006.4518

∫

q,r

e−sq2−ur2−v(q+r)2

q2
=

2

(4π)D(D − 2)(u+ v)
(su+ uv + vs)1−D/2. (B.3)

The second formula, for example, allows the integral

∫

q,r

e−t(q2+r2+(q+r)2)

q2r2
=

1

(4π)4(2t)2
{

8 ln 2− 4 ln 3 + O(ε)
}

(B.4)

to be quickly evaluated once the propagator 1/r2 is replaced by its Feynman param-
eter representation.

A special case are integrals like

∫ t

0
ds

∫

q,r

e−(t+s)(q2+r2)−(t−s)(q+r)2

q2r2
qr

=
1

(4π)4(2t)2
{

1
2 − 4 ln 2 + 2 ln 3 + O(ε)

}

, (B.5)

whose integrand is proportional to qr. Noting

qr = 1
2

{

(q + r)2 − q2 − r2
}

, (B.6)

the factor can be traded for a differentiation with respect to the flow-time parame-
ters. Most of the time, this allows one integral over these parameters to be performed
right away and thus leads to simpler integrals without factors of qr.

Appendix C. Numerical integration of the Wilson flow

On a finite lattice, the space G of all gauge fields is a finite power of the gauge group
and thus itself a Lie group. The associated Lie algebra g coincides with the linear
space of all link fields with values in the Lie algebra of the gauge group. From this
abstract point of view, the flow equation (1.4) is an ordinary first-order differential
equation of the form

V̇t = Z(Vt)Vt, (C.1)

where Vt ∈ G and Z(Vt) ∈ g.

19

The Runge–Kutta scheme described in this appendix obtains the solution of the
flow equation at times t = nε, n = 1, 2, 3, . . ., recursively, starting from the initial
configuration at t = 0. The rule for the integration from time t to t+ ε is

W0 = Vt,

W1 = exp
{

1
4Z0

}

W0,

W2 = exp
{

8
9Z1 − 17

36Z0

}

W1,

Vt+ε = exp
{

3
4Z2 − 8

9Z1 +
17
36Z0

}

W2, (C.2)

where

Zi = εZ(Wi), i = 0, 1, 2. (C.3)

Note that this rule is fully explicit. Moreover, since the gauge field can be overwritten
from one equation to the next, and since Z0 can be overwritten by 8

9Z1 − 17
36Z0,

intermediate storage space for only one of these latter fields is required.
A straightforward calculation shows that the integration scheme (C.2) is accurate

up to errors of order ε4 per step. The total error of the integration up to a specified
flow time thus scales like ε3. Empirically one finds that the integration is numerically
stable in the direction of positive flow time, the integration errors in the link variables
being on the order of 10−6 if ε = 0.01.
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• Is this coefficient scheme unique?          NO 
• Are there higher order ones?                  YES

If you are curious about the 
derivation:  

Bazavov, Chuna, 2101.05320
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• Most codes seem to use the original 
Lüscher, 1006.4518 integrator 

• Variable step size scheme based on 
Lüscher’s, e.g. 
Fritzsch, Ramos, 1301.4388 
are also in use — not covered here 

• Some evidence of fourth-order, 
e.g. Cè et al., 1506.06052
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Figure 8: Comparison of the numerical in-
tegration methods. The systematic error
�Et (✏), where t = 3.2a2, is estimated from
100 configurations of the lattice B1 by tak-
ing the difference between Et (✏), evolved with
step size ✏, and Et (✏/2), evolved with ✏/2.

Alternative RK methods for integrating
(B.1) are given by the Crouch–Grossman
integrators [41, 42]. They are a spe-
cial case of so-called commutator-free Lie
group methods [43]. The third order al-
gorithm described in Ref. [12] belongs
to this class. The conditions which the
coefficients need to satisfy, order by or-
der, are computable up to arbitrary or-
der [44]. They are given by the order con-
ditions for a classical RK method, plus
specific extra conditions. At fourth or-
der, however, we did not find a coefficient
scheme with the useful properties of the
Lüscher’s integrator in terms of exponen-
tial reusing.

B.1 Application to the Yang–

Mills gradient flow

The Yang–Mills gradient flow equation (3.1) can be written as an ordinary first-order
autonomous differential equation

V̇ (t) = Z[V (t)]V (t) , V (0) = V0 , (B.9)

where
Z[V (t)] = �g2

0{@x,µS[V (t)]} , (B.10)

and the link differential operators are defined in Eq. (A.11). The fourth order RKMK
method in (B.8) reads

W1 = V (t) , Zi = ✏Z[Wi] ,

W2 = exp

⇢
1

2
Z1

�
V (t) ,

W3 = exp

⇢
1

2
Z2 +

1

8
[Z1, Z2]

�
V (t) ,

W4 = exp {Z3}V (t) ,

V (t+ a2✏) = exp

⇢
1

6
Z1 +

1

3
Z2 +

1

3
Z3 +

1

6
Z4 �

1

12
[Z1, Z4]

�
V (t) .

(B.11)

This method computes four times the force field Z[Wi] and four times the Lie group
exponential. The commutators are economically implemented exploiting structure con-
stants of g. Each iteration needs space in memory for one auxiliary gauge field and

21
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classical RK method as [24]

LiX

l=1

↵l;i j = ai j,
LX

l=1

�l;i = bi. (22)

To better understand the notation of Algorithm 4 we list in Al-
gorithm 5 explicit steps of one of the methods of Ref. [24]
where s = 3, L1 = 0, L2 = 1, J21 = 1, L3 = 1, J31 = 2,
L = 2, I1 = 1 and I2 = 3

Algorithm 5 3-stage third-order commutator-free Lie group
method of Ref. [24]

1: Y1 = Yt

2: K1 = F(Y1)
3: Y2 = exp(h↵1;21K1)Yt

4: K2 = F(Y2)
5: Y3 = exp(h(↵1;32K2 + ↵1;31K1))Yt

6: K3 = F(Y3)
7: Yt+h = exp(h(�2;3K3 + �2;2K2 + �2;1K1)) exp(h�1;1K1)Yt

It was found in Ref. [24] that fixing �1;1 = ↵1;21 = 1/3 allows
one to reuse Y2 at the final step and the other coe�cients form
a one-parameter family of solutions.

4.3. Low-storage commutator-free Lie group methods

Ref. [24] considered such commutator-free methods that
reuse exponentials. For instance, in Algorithm 5 Y2 is reused at
the final stage so one needs only three exponential evaluations
in total. Recently, Ref. [4] considered designing a commutator-
free method where every next stage reuses Yi from the previous
stage and contains only one exponential evaluation per stage
(inspired by Algorithm 7 of Ref. [2], see below). Such meth-
ods form a subclass of methods of Ref. [24] but di↵er from the
solutions found there by how the exponentials are reused. It
turned out that for a 3-stage third-order commutator-free Lie
group method with exponential reuse the additional order con-
dition resulting from non-commutativity is the same as the or-
der condition for a 2N-storage 3-stage third-order classical RK
method, Eq. (15). Thus, it was proven in [4] that all 2N-
storage 3-stage third-order classical RK methods of [10], i.e.

all points on the Williamson curve, Fig. 1, are also low-storage
third-order commutator-free Lie group integrators. It was con-
jectured in [4] that 2N-storage classical RK methods of order
higher than three are also automatically Lie group integrators
of the same order. Numerical evidence was provided in support
of the conjecture. Moreover, for a given set of numerical values
of coe�cients Ai, Bi of a classical 2N-storage RK method the
order of the Lie group method based on it can be determined
algorithmically by using B-series [25]. Thus for all such meth-
ods that we use here, given the coe�cients Ai, Bi of a classical
2N-storage RK method with s stages and global order of ac-
curacy p, the procedure listed in Algorithm 6 is a low-storage
commutator-free Lie group method of order p.

Let us now turn to the discussion of the integrator first in-
troduced by Lüscher in Ref. [2]. In our notation it is given
in Algorithm 7. This scheme belongs to the generic class of

Algorithm 6 2N-storage s-stage commutator-free Runge-Kutta
Lie group method

1: Y0 = Yt

2: for i=1,. . . ,s do
3: �Yi = Ai�Yi�1 + hF(Yi�1) . A1 = 0
4: Yi = exp(Bi�Yi)Yi�1
5: end for
6: Yt+h = Ys

commutator-free Lie group methods developed in Ref. [24],
however, it di↵ers from the classes of solutions found there.
Given that the linear combination of K1 and K2 is the same at
steps 5 and 7 and the previous stage is reused at steps 3, 5 and
7, this integrator has certain reusability property. As far as we
are aware, an integrator with the structure and numerical co-
e�cients of Algorithm 7 was not present in the literature on
manifold integrators prior to Ref. [2]. Thus, we believe that this
method was derived independently. Since its derivation was not
presented in [2], we present our derivation in Appendix C for
illustrative purposes and also to document the order conditions
in the form that we were not able to find in the existing litera-
ture. This scheme provides a link to the recent developments of
Ref. [4].

Algorithm 7 3-stage third-order Lie group method of Ref. [2]
1: Y1 = Yt

2: K1 = F(Y1)
3: Y2 = exp

⇣
h

1
4 K1
⌘

Y1
4: K2 = F(Y2)
5: Y3 = exp

⇣
h

⇣
8
9 K2 � 17

36 K1
⌘⌘

Y2
6: K3 = F(Y3)
7: Yt+h = exp

⇣
h

⇣
3
4 K3 � 8

9 K2 +
17
36 K1
⌘⌘

Y3

It turns out that when Algorithm 7 is rewritten in the 2N-
storage format of Algorithm 6 and the Ai, Bi coe�cients are
converted to the coe�cients of the classical underlying RK
scheme, Eqs. (13), (14), the latter are the same as for the
RK3W6 classical RK method discussed in Sec. 3.1. It is shown
as a blue square on the Williamson curve, Fig. 1. Thus, the
method of Ref. [2] belongs to the class of 2N-storage classical
RK methods which are automatically Lie group integrators of
the same order as proven in [4]. We will explore this to find
the optimal set of coe�cients for integrating the gradient flow
in Sec. 5.1.

5. Numerical results

To explore the properties of di↵erent integrators we used
three gauge ensembles with the lattice spacing ranging from
0.15 fm down to 0.09 fm listed in Table 1. These ensembles
were generated by the MILC collaboration with the one-loop
improved gauge action [5] and the Highly Improved Staggered
Quark (HISQ) action [26, 27]. The light quark masses were
tuned to produce the Goldstone pion mass of about 300 MeV

5

• It has been recently shown that 2N-storage classical Runge-Kutta 
schemes of Williamson type are automatically structure-preserving 
integrators of the same order, 2007.04225: 
• proved at third order 
• conjectured for higher order 

• The coefficient scheme of Lüscher, 1006.4518 is equivalent to the 
classical scheme #6 in Williamson, 1980
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void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 GaugeField Z(U.Grid());
 GaugeField tmp(U.Grid());
 SG.deriv(U, Z);
 Z *= 0.25;                                  // Z0 = 1/4 * F(U)
 Gimpl::update_field(Z, U, é2.0*epsilon);    // U = W1 = exp(ep*Z0)*W0

 Z *= é17.0/8.0;
 SG.deriv(U, tmp); Z += tmp;                 // é17/32*Z0 +Z1
 Z *= 8.0/9.0;                               // Z = é17/36*Z0 +8/9*Z1
 Gimpl::update_field(Z, U, é2.0*epsilon);    // U_= W2 = exp(ep*Z)*W1

 Z *= é4.0/3.0;
 SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 é8/9*Z1) +Z2
 Z *= 3.0/4.0;                               // Z = 17/36*Z0 é8/9*Z1 +3/4*Z2
 Gimpl::update_field(Z, U, é2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2

}

9
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void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 GaugeField Z(U.Grid());
 GaugeField tmp(U.Grid());

 Z *= 0.0;
 SG.deriv(U, tmp); Z += tmp;
 tmp = Z;
 tmp *= 0.25;                                  // Z0 = 1/4 * F(U)
 Gimpl::update_field(tmp, U, é2.0*epsilon);    // U = W1 = exp(ep*Z0)*W0

 Z *= é17.0/32.0;
 SG.deriv(U, tmp); Z += tmp;                 // é17/32*Z0 +Z1
 tmp = Z;
 tmp *= 8.0/9.0;                               // Z = é17/36*Z0 +8/9*Z1
 Gimpl::update_field(tmp, U, é2.0*epsilon);    // U_= W2 = exp(ep*Z)*W1

 Z *= é32.0/27.0;
 SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 é8/9*Z1) +Z2
 tmp = Z;
 tmp *= 3.0/4.0;                               // Z = 17/36*Z0 é8/9*Z1 +3/4*Z2
 Gimpl::update_field(tmp, U, é2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2

}

Gradient flow in Grid: qcd/smearing/WilsonFlow.h
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void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 GaugeField Z(U.Grid());
 GaugeField tmp(U.Grid());

#define RK_STAGES 3
 double A[RK_STAGES] = {0,é17/32.,é32/27.};
 double B[RK_STAGES] = {1/4.,8/9.,3/4.};

 Z *= A[0];
 SG.deriv(U, tmp); Z += tmp;
 tmp = Z;
 tmp *= B[0];                                  // Z0 = 1/4 * F(U)
 Gimpl::update_field(tmp, U, é2.0*epsilon);    // U = W1 = exp(ep*Z0)*W0

 Z *= A[1];
 SG.deriv(U, tmp); Z += tmp;                 // é17/32*Z0 +Z1
 tmp = Z;
 tmp *= B[1];                               // Z = é17/36*Z0 +8/9*Z1
 Gimpl::update_field(tmp, U, é2.0*epsilon);    // U_= W2 = exp(ep*Z)*W1

 Z *= A[2];
 SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 é8/9*Z1) +Z2
 tmp = Z;
 tmp *= B[2];                               // Z = 17/36*Z0 é8/9*Z1 +3/4*Z2
 Gimpl::update_field(tmp, U, é2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2

}

Gradient flow in Grid: qcd/smearing/WilsonFlow.h
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void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 GaugeField Z(U.Grid());
 GaugeField tmp(U.Grid());

#define RK_STAGES 3
 double A[RK_STAGES] = {0,é17/32.,é32/27.};
 double B[RK_STAGES] = {1/4.,8/9.,3/4.};

 for( int i=0; i<RK_STAGES; i++ ) {
   Z *= A[i];
   SG.deriv(U, tmp); Z += tmp;
   tmp = Z;
   tmp *= B[i];
   Gimpl::update_field(tmp, U, é2.0*epsilon);
 }

}

Gradient flow in Grid: qcd/smearing/WilsonFlow.h
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void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 GaugeField Z(U.Grid());
 GaugeField tmp(U.Grid());

#define RK_STAGES 3
 double A[RK_STAGES] = {0,é5/9.,é153/128.};
 double B[RK_STAGES] = {1/3.,15/16.,8/15.};

 for( int i=0; i<RK_STAGES; i++ ) {
   Z *= A[i];
   SG.deriv(U, tmp); Z += tmp;
   tmp = Z;
   tmp *= B[i];
   Gimpl::update_field(tmp, U, é2.0*epsilon);
 }

}

Gradient flow in Grid: qcd/smearing/WilsonFlow.h

Scheme #7 of 
Williamson, 1980
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void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 GaugeField Z(U.Grid());
 GaugeField tmp(U.Grid());

#define RK_STAGES 5
 double A[RK_STAGES] = {0,
                       é567301805773/1357537059087.,
                       é2404267990393/2016746695238.,
                       é3550918686646/2091501179385.,
                       é1275806237668/842570457699.};
 double B[RK_STAGES] = {1432997174477/9575080441755.,
                        5161836677717/13612068292357.,
                        1720146321549/2090206949498.,
                        3134564353537/4481467310338.,
                        2277821191437/14882151754819.};

 for( int i=0; i<RK_STAGES; i++ ) {
   Z *= A[i];
   SG.deriv(U, tmp); Z += tmp;
   tmp = Z;
   tmp *= B[i];
   Gimpl::update_field(tmp, U, é2.0*epsilon);
 }

}

Gradient flow in Grid: qcd/smearing/WilsonFlow.h

Carpenter, 
Kennedy, 

1994, 
4th order
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void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 GaugeField Z(U.Grid());
 GaugeField tmp(U.Grid());

#define RK_STAGES 6
 double A[RK_STAGES] = {0,é0.737101392796,é1.634740794341,
                       é0.744739003780,é1.469897351522,é2.813971388035};
 double B[RK_STAGES] = {0.032918605146,0.823256998200,0.381530948900,
                        0.200092213184,1.718581042715,0.27};

 for( int i=0; i<RK_STAGES; i++ ) {
   Z *= A[i];
   SG.deriv(U, tmp); Z += tmp;
   tmp = Z;
   tmp *= B[i];
   Gimpl::update_field(tmp, U, é2.0*epsilon);
 }

}

Gradient flow in Grid: qcd/smearing/WilsonFlow.h

Berland, 
Bogey, 
Bailly, 
2006, 

4th order
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Table 1: The MILC 2+1+1 flavor ensembles used in this study, the details
can be found in [28]. In the second column the volume is listed, in the third
the approximate lattice spacing and in the fourth the maximum flow time Tmax.
Here Tmax is dimensionless and approximately equal to (wphys

0 /a)2.

Ensemble N
3
� ⇥ N⌧ a, fm Tmax

l1648f211b580m013m065m838 163 ⇥ 48 0.15 1.4
l2464f211b600m0102m0509m635 243 ⇥ 64 0.12 2.0
l3296f211b630m0074m037m440 323 ⇥ 96 0.09 3.8

and the strange and charm quark masses are set to the physical
values.

We integrate the flow for the amount of time Tmax that is
needed to determine the w0-scale according to Eq. (8) with
Const = 0.3. The values of Tmax for each ensemble are given
in Table 1. The w0-scale for these ensembles was determined in
Ref. [29].

To find the global error for each integration method we need
to compare to the exact solution. For this purpose we have also
implemented a 13-stage eighth-order RK integrator of Munthe-
Kaas type, Algorithm 3, with Prince-Dormand coe�cients [30]
that we refer to as RKMK8. At step size h = 10�2 it provides
the result that is exact within the floating point double precision.
For this reason the results from RKMK8 are labeled as “exact.”

To evaluate the global error introduced by the integration
methods several quantities are studied. Let us first define the
squared distance between two SU(3) matrices X, Y:

D(X,Y) ⌘
3X

i, j=1

|Xi j � Yi j|2. (23)

For a set of flowed gauge fields the distance from the exact so-
lution is defined as 2:

�V ⌘
X

x

X

µ

q
D(Vx, µ(t = Tmax),Vexact

x, µ (t = Tmax)). (24)

We also calculate the value of the plaquette, rectangle and
clover expression averaged over the lattice:

P =
1

6N
3
�N⌧

X

x

X

µ<⌫

ReTr(Px, µ,⌫), (25)

R =
1

12N
3
�N⌧

X

x

X

µ,⌫

ReTr(Rx, µ,⌫), (26)

C =
1

N
3
�N⌧

X

x

X

µ,⌫

ReTr(Cx, µ,⌫Cx, µ,⌫). (27)

Up to a constant prefactor and a shift these quantities provide
the three di↵erent discretizations of the action, Eqs. (4)–(6) that

2Other definitions are possible, e.g.

�V ⌘
sX

x

X

µ

D(Vx, µ(t = Tmax),Vexact
x, µ (t = Tmax)).

They scale with the step size in the same way as (24).

can be used for the w0-scale determination in (8). The global
error is also estimated from the di↵erences:

�Z ⌘ Z(t) � Z
exact(t), (28)

where Z = P, R or C and t-dependence means that these quan-
tities are computed using evolved gauge links V(t).

5.1. Tuning the third-order low-storage Lie group integrator

We now address the question of what integrator out of the
family of schemes along the Williamson curve can provide
the lowest error for integrating the SU(3) gradient flow. The
Williamson curve is parametrized with a variable u which is
the distance along the curve from the point (2/3, 0) to (1, 1/3)
such that u 2 [0, 1]. We pick 32 coe�cient schemes c2(u), c3(u)
and use their coe�cients for low-storage commutator-free Lie
group integrators in the form of Algorithm 6. We refer to these
methods in general as LSCFRK3 – low-storage, commutator-
free, Runge-Kutta, third-order. We picked such values of c2 and
c3 that are either rational or given in terms of radicals. Two par-
ticular schemes are of interest in the following: LSCFRK3W6
(equivalent to the integrator of Ref. [2]) and LSCFRK3W7.
These are commutator-free Lie group versions of the classi-
cal RK integration schemes RK3W6 and RK3W7 discussed in
Sec. 3.1.

For this part of the calculation we have chosen 11 lattices
per each ensemble separated by 500 molecular dynamics time
units for the first two ensembles and 360 time units for the third
ensemble in Table 1. For the first two ensembles we ran both the
Wilson and Symanzik flow, and only the Symanzik flow for the
third ensemble. We ran all 32 LSCFRK3 methods at step sizes
h = 1/16, 1/32, 1/64 and 1/128 and RKMK8 at h = 1/128.
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Figure 2: The leading-order coe�cient D
V

3 for the global integration error
defined in Eq. (29) as function of the distance along the Williamson curve u.
u = 0 represents the LSCFRK3 method with c2 = 2/3, c3 = 0, and u =
1 the method with c2 = 1, c3 = 1/3. The arrows labeled “W6” and “W7”
represent the LSCFRK3W6 and LSCFRK3W7 schemes discussed in the text.
The statistical errors are (much) smaller than the symbol size.

We first consider the behavior of the distance metric defined
in (24). For a third-order method the distance is expected to

6

scale as O(h3). We fit the distance �V as a function of the step
size to a polynomial form:

h�V(h)i = D
V

3 h
3 + D

V

4 h
4 + D

V

5 h
5, (29)

where h. . . i represents the ensemble average. In some cases
we omitted the fifth-order term if a reasonable fit resulted from
just the first two terms. The errors on the fit parameters were
estimated with a single elimination jackknife procedure.

In Fig. 2 we show the dependence of the leading-order global
error coe�cient D

V

3 as function of the distance u along the
Williamson curve (i.e. the RK coe�cient scheme) for all en-
sembles and flows that we analyzed. The values of D

V

3 are
normalized in the following way. For the Symanzik flow on
the 163 ⇥ 48 lattice D

V

3 (u) is divided by 5 ⇥ 106. (This large
factor stems from the fact that our definition of �V is exten-
sive.) For all the other ensembles and flows D

V

3 (u) is divided
by such a constant that D

V

3 (u = 0) coincides with the one for
the 163 ⇥ 48 lattice Symanzik flow. As one can observe from
Fig. 2, the behavior of D

V

3 (u) is similar for di↵erent ensembles
and di↵erent types of flow. The LSCFRK3W7 Lie group in-
tegrator is closer to the minimum of the global error than the
LSCFRK3W6 method. Note that since the definition of �V is
manifestly positive, the leading order coe�cient D

V

3 (u) is also
positive for all u.
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Figure 3: The global integration error in the plaquette h�Pi, rectangle h�Ri
and the clover expression h�Ci as function of distance along the Williamson
curve u. h�Pi and h�Ri match h�Ci after they are multiplied by a constant
factor. The rescaled values of h�Pi and h�Ri are shifted by ±3 ⇥ 10�6 to be
distinguishable from h�Ci.

Next, we study the action related observables, Eqs. (25)–
(27). In Fig. 3 we show the global errors h�Pi, h�Ri and h�Ci,
defined in (28), as function of u evaluated at Tmax = 1.4 with
step size h = 1/16 for the Wilson flow on the a = 0.15 fm
ensemble. When h�Pi and h�Ri are rescaled by a constant
so that they coincide with h�Ci at u = 0, all three quantities
collapse onto the same curve. In fact, the collapse is so accu-
rate that the quantities labeled “rescaled” in the figure would
be completely covered by the clover h�Ci had not we shifted
them by ±3 ⇥ 10�6. This is expected since at later flow times

the gauge fields are smooth and the di↵erence between di↵er-
ent discretizations diminishes. It is remarkable that the collapse
happens already at our coarsest lattice, for the least improved
flow at the largest step size, h = 1/16. We therefore focus
solely on the clover discretization in the following.

Similarly to Eq. (29) we fit the global integration error �C as
function of step size to a polynomial:

h�C(h)i = D
C

3 h
3 + D

C

4 h
4 + D

C

5 h
5. (30)

We omit the fifth-order term whenever a reasonable fit is ob-
tained with the first two terms.
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Figure 4: The leading-order coe�cient D
C

3 for the global integration error de-
fined in Eq. (30) as function of the distance along the Williamson curve u. The
arrows labeled “W6” and “W7” represent the LSCFRK3W6 and LSCFRK3W7
schemes discussed in the text. The statistical errors are (much) smaller than the
symbol size.

In Fig. 4 we plot the dependence of the leading order global
error coe�cient D

C

3 as function of u for all ensembles and flows,
similar to Fig. 2. The data is rescaled such that all values at
u = 0 match the value of D

C

3 for the Symanzik flow on the
163 ⇥ 48 lattice. Interestingly, unlike h�V(h)i, h�C(h)i is not
necessarily positive. We observe that while most of the inte-
gration schemes approach the exact result from above, there is
a region of u where the exact result is approached from below.
The LSCFRK3W7 scheme is close to the point where D

C

3 = 0
universally across the ensembles and types of flow.

The interval u 2 [0.35, 0.65] is magnified in Fig. 5 for the
323 ⇥ 96 ensemble and the Symanzik flow. The fourth-order
coe�cient D

C

4 (u) is also shown. For the LSCFRK3W7 scheme
it is also relatively small. Therefore this method provides close
to the lowest error for the action observables that are central for
scale setting.

In Fig. 6 we directly compare h�C(h)i for LSCFRK3W6,
LSCFRK3W7 and LSCFRK3W93 for the 323 ⇥ 96 ensem-
ble. The LSCFRK3W7 scheme has the smallest error h�C(h)i,

3This scheme has irrational coe�cients and it has the minimal theoretical
bound on the global error using the definition of Ref. [31]. In other words, these
are “Ralston coe�cients” but with taking into account the additional constraint
of the low-storage method. More details can be found in Refs. [10, 4].

7

• Leading order, , 
coefficient of the integration 
error in the norm of the gauge 
field itself vs the coefficient 
scheme

O(h3) • Leading order, , 
coefficient of the integration 
error in the energy density vs 
the coefficient scheme

O(h3)
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Figure 13: Scaling of the global integration error in the clover observable h�Ci
with the number of right hand side evaluations Nrhs for the Symanzik flow on
the three gauge ensembles. All integrators were run at step sizes h = 1/128,
1/64, 1/32 and 1/16 except LSCFRK4CK and LSCFRK4BBB where h = 1/8
was also included. The lines are drawn to guide the eye.

similarly to our discussion in Sec. 5.1. However, due to the
complexity of the order conditions, no analytic solutions such
as Eq. (15) are available. This makes tuning of that integrator a
complicated task. We note that there are three more coe�cient
schemes reported in Ref. [13], but we found them less e�cient
than the main scheme that Ref. [13] recommended and which
was implemented in this study.

5.4. Final comparison

The integration schemes that we explored di↵er in the num-
ber of stages. To compare their computational e�ciency,
Fig. 13 shows the dependence of the global error in the clover
observable vs the number of right hand side evaluations for the
third-order method of Ref. [2] LSCFRK3W6, the third-order
scheme LSCFRK3W7 that we discussed in Sec. 5.1, and the
two fourth-order methods LSCFRK4CK and LSCFRK4BBB.
Compared with LSCFRK3W6 we find that the LSCFRK3W7
scheme produces lower global error at all step sizes explored
and is thus more beneficial computationally. The fourth-
order LSCFRK4BBB scheme becomes more beneficial than
LSCFRK3W6 at step size of about h = 1/16 for the 163 ⇥ 48
and 243 ⇥ 64 ensembles and about h = 1/32 for the 323 ⇥ 96
ensemble (the step size here is for the LSCFRK3W6 integrator,
the one for LSCFRK4BBB is about twice as large at the cross-
ing point). Compared with LSCFRK3W7, LSCFRK4BBB be-
comes more e�cient at h = 1/128 (h for LSCFRK3W7). For
the 323 ⇥ 96 ensemble the five-stage LSCFRK4CK method be-
comes comparable with LSCFRK4BBB.

6. Conclusion

Based on the connection [4] between the 2N-storage clas-
sical Runge-Kutta methods [10] and commutator-free integra-
tors [24] we explored several possible improvements in the ef-
ficiency of integrating the gradient flow in lattice gauge theory.

Among the low-storage three-stage third-order schemes that
are parametrized by the Williamson curve the LSCFRK3W7 is
the most promising. Its global error in the norm of the gauge
field is close to the minimum, Fig. 2. For the action observ-
ables this method is close to the point where the leading or-
der error coe�cient is close to zero. Like the originally pro-
posed LSCFRK3W6 method of Lüscher [2], LSCFRK3W7 has
rational coe�cients that are given in the 2N-storage form in
Appendix B. The performance of the LSCFRK3W7 method is
universal across ensembles with di↵erent lattice spacing, types
of flow and types of observable that we explored. For a specific
gradient flow application the reader can always revisit the tun-
ing of the third-order scheme similar to our study in Sec. 5.1 by
e.g. running a small-scale test on the set of rational values of c2
and c3 coe�cients given in Appendix B that reasonably cover
the Williamson curve. For the reader’s convenience we also
provide a listing of the Mathematica script that calculates the
LSCFRK3 method coe�cients in various formats from given
c2 and c3 in Appendix D.

Our studies of the third-order variable step size methods in
Sec. 5.2 indicate that one needs to exercise caution in interpret-
ing the local tolerance � parameter. Its relation to the global
integration error is not a priori known, in the same way as it
happens with the step size h for fixed step size methods. Thus,
in both situations one needs to study the scaling of the global
error with the control parameter, step size h or local tolerance
�, and tune it based on that for each specific case. For w0-scale
setting applications we find that it is still computationally more
e�cient to use the fixed step size LSCFRK3W7 method rather
than the third-order variable step size schemes. For applica-
tions where the third-order variable step size methods may be
beneficial we also include the coe�cient scheme that allows
one to reuse the second stage of the third-order integrator in the
embedded second-order integrator in the Mathematica script in
Appendix D.

There are two low-storage fourth-order methods studied in
Sec. 5.3 that may be well-suited for gradient flow applications.
We find that the LSCFRK4BBB method is the most compu-
tationally e�cient one, although the five-stage LSCFRK4CK
method becomes comparable at finer ensembles. For the gauge
ensembles that we studied we conclude that if one needs to run
the LSCFRK3W6 integrator at time steps lower that 1/32, it
is more beneficial to switch to LSCFRK4BBB. A fourth-order
RKMK4 method was used in Ref. [35] to provide a conserva-
tive estimate of the integration error for observables related to
the topology of gauge fields. We believe that LSCFRK4BBB
provides a better alternative to RKMK4, see Fig. 12. For the
three gauge ensembles used here the LSCFRK4BBB integra-
tor is stable at the largest step size we tried, h = 1/8. The
average integration error at this step size for the clover observ-
able is h�C(h = 1/8)i = �3.7 ⇥ 10�6 for the a = 0.15 fm,
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• Ensembles with 
, 0.12 and 0.09 fm 

• Two third-order and two 
fourth-order schemes 

• Non-monotonicity due to 
zero crossing of the error 
(i.e. some schemes 
approach the solution from 
above and some from 
below) 

a = 0.15

Bazavov, Chuna, 2101.05320
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• 2N-storage classical Runge-Kutta methods of Williamson type are 
automatically structure-preserving integrators of the same order 

• Must be easy to introduce this type of integrators into existing codes, 
e.g. Grid 

• Implemented in MILC: 
• RKMK (with commutators): third, fourth, fifth and eighth order 
• Low-storage: third order with arbitrary coefficients, fourth order 

with Carpenter, Kennedy and Berland, Bogey, Bailly coefficients 
• Variable steps size third(second) order pairs with arbitrary 

coefficients and Bogacki-Shampine type 
• Possible gains depend on the application, for scale setting on the 

MILC ensembles low-storage fourth order works best 
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