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Outline

e Field transformation, a.k.a. change of variables, a.k.a. contour deformation
e Construct gauge covariant field transformation with neural networks
e A test on 2D U(1) pure gauge:

e Train the Field Transformation (FT) model at a coupling/volume

e Run FTHMC using the model at other couplings/volumes

e Conclusion



Field Transformation and Trivializing Maps

o Change of variables: use a continuously differentiable bijective map # ~1 from target field
U to the mapped field V = %~ 1(U), same group manifold for us

] o o 0F(V
(0) = [@U@(U)e‘S(U) — E[QV@(9(V))e‘5(f(v))+ln‘f*‘ where Z, = a; )
o Sample V with HMC according to the new action: Field Transformation HMC (FTHMC)

Ser(V) = S(F(V)) —In| F (V)]

« Luscher, 2010: construct & such that SFT(V) = const, a trivializing map

e More FITHMC tests:

o F from stout smearing on 4D SU(3) pure gauge DBW2, Luchang Jin's Poster

o F from MIT group's NVP flow (Sebastien Racaniere's Talk), Sam foreman's Poster



Gauge Covariant Link Update, Generalized tor ML

« We know gauge covariant update, all the time in HMC and stout smearing, with a list of Wilson loops W,

U, = Uy, =e"U,, whereTl, , = ) €d, W,
e Generalize it for machine learning /

e Use stout smearing as neural networks, Akio Tomiya's talk

e Make the coefficients arbitrary functions of gauge invariant quantities

€yl = ctan™! [/VZ(X, Y, )]

o X, 7, ... alist of traced Wilson loops local to x, ¢, and independent of U, ,

o J/J is a convolutional neural network, ./, is one of the output channels

o ctan”![ - | ensures a positive definite Jacobian



Localized Coetficients, by Convolutional Neural Networks
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e Pick a subset of gauge links to update at a time (red links)

e Compute Wilson loops independent of the to-be-updated links (green loops)

e Pass through a series of convolutional neural networks and obtain coeftficients



Train Transformations, not Complete Trivializing Maps

e Do we need a complete trivializing map to improve HMC?

e Our test: training a transformation mapping the target field to a field distribution with the

effective action similar to the gauge action at ﬁmap = 2.5

e On 2D U(1) pure gauge with the Wilson plaquette action
« Use HMC to generate configurations at target f = 3,4, 5, ...

e Compute the force of the effective action on the generated configurations

e Minimize L2-norm and Loo-norm of the difference in the effective force and the force
with f_ == 2.5

map

o Transfer training the trained model at f = 3 to / = 4, and so on with increasing f



Plaquette Values with trained models, lattice size 16 X 16
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AQ2 HMC with Neural Network Field Transformation, 16 X 16
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Performs well with model trained at f = 35



AQ? FTHMC, lattice size 32 X 32, using model trained in 16 X 16
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Poorly tuned acceptance rates that vary between 0.7 to 0.95
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Numbers for Geeks

e Everything ran on 2012 Ivy Bridge 17-3770 at 3.40 GHz, 4 cores, 2 threads/core
e The test model uses 8 link update layers to update the whole lattice
e FEach link update layer contains (each Conv2D layer has 2 channels),

o 1 Conv2D, 3x2 kernel size, K, for traced plaquette loops
o 1 Conv2D, 3x3 kernel size, K, for traced rectangle (2x1) loops
« 2 Conv2D, 3x3 kernel size, K, for the combined filter to get coefficients

o For each f, the training uses batch size 64, 1024 training steps, each step takes 5 seconds (HMC included),
uses about 8 GB; an inference (FTHMC) trajectory of 10 leapfrog steps takes less than 3 seconds

e The same code with identity transformation (HMC), 1 trajectory of 20 steps takes 0.6 sec for a batch of 2048

e For this code and this model, FTHMC is ~300x slower than HMC
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TensorFlow, the Good, the Bad, and the Ugly

e Good

e Fast. Trace compiling of TensorFlow graph optimizes code and remove
python overhead. A few factors faster than other ML frameworks.

e Bad

e Limited. No periodic padding. No Conv4D. Derivatives w.r.t. input do not
seem to use optimized code path and are memory intensive.

o Ugly

e Non-Pythonic. Different semantics and cryptic error messages inside
tf.function.
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Conclusion and Outlook

e We propose a general construction of gauge covariant neural networks that is group-agnostic.

e We train a simple model to map 2D U(1) gauge configurations to a stronger coupling, and use
the trained model in HMC with different values of coupling and lattice sizes and see
improvement in tunneling of topological sectors.

e Code and extra goodies: https://github.com/nftqcd/nthmc

e Future
e Careful study of scaling behavior to determine cost-effectiveness.
e Explore other uses of tunable field transformations.

e Software: optimize our code; may need to either restrict our field models to existing APISs,
or invest in creating an optimized ML framework for lattice fields.
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