Tensor Network Simulations of a Manifestly Gauge-invariant LGT in 1+1D

Aniruddha Bapat

with Zohreh Davoudi, Niklas Mueller, and Indrakshi Raychowdhury
University of Maryland
29 July 2021

Motivation

(Long-term) Goal: Q. Simulation of QCD = SU(3) Lattice Gauge Theory (LGT) in 3+1 D
(Near-term) Goal: Simulate SU(2) Lattice Gauge Theory (LGT) in 1+1, $2+1$ D
Traditional approach: Path-integral Monte Carlo in "Euclidean" spacetime.

Issue: Sign problem, which limits access to

- Finite density systems
- Real-time dynamics

Alternative approach: Tensor networks

- TN simulation of Schwinger model
- TN simulation of SU(2) LGT in 1+1 D

Tensor Networks

1+1d QED/Zn

Banuls et al (2013) JHEP 2013(11), 158 \& PRD 92 (2015) 034519 \& PRD 93 (2016), 094512.
Zapp et al (2017) PRD, 95(11), 114508.
Magnifico PRD 99, no. 1 (2019): 014503 \& PRB 100 (2019): 115152 Butt et al (2020) PRD, 101(9), 094509.

2+1d QED/Zn TN

Robaina et al arXiv:2007.11630 (2020) Physical Review Letters, 126 (2021), Emonts et al PRD 102, no. 7 (2020): 074501.

3+1d QED TN

Magnifico et al arXiv:2011.10658 (2020).

SU(2) LGT

Hamiltonian formulation:
$H=H_{E}+H_{M}+H_{I}+H_{B}$
$H_{E}=\frac{g^{2} a}{2} \sum_{n, i} E^{2}(n, i)$
$H_{M}=m \sum_{n, i, \alpha}^{n, 2}(-1)^{n} \psi^{\alpha \dagger}(n) \psi^{\alpha}(n)$
$H_{I}=\frac{1}{2 a} \sum_{n, i, \alpha \beta}(-1)^{n} \psi^{\alpha \dagger}(n) U_{\alpha \beta}(n, i) \psi^{\beta}(n+i)$
$H_{B}=\frac{2 a}{g^{2}} \sum_{\square}\left(\operatorname{Tr} U_{\square}+\right.$ h.c. $)$
Gauss' Laws: $\mathrm{G}^{\mathrm{a}} \mid \mathrm{phys}>=0$
$G^{a}(n)=\sum_{i}\left[E_{L}^{a}(n, I)-E_{R}^{a}(n-i, i)\right]-\psi(n)^{\dagger} \frac{\sigma^{a}}{2} \psi(n)$
$\left[G^{a}, G^{b}\right]=i f_{c}^{a b} G^{c} \neq 0 \quad(!)$

Challenging!

- Noncommuting constraints
- Cannot eliminate gauge fields in d>1 (as in, e.g., Banuls et al, PRX no. 4, (2017):041046)

Want:

- Gauge-invariant operator set
- Locality
- Simpler constraints
\Rightarrow Loop-String-Hadron formulation of SU(2) LGT! $\begin{gathered}(1 . \text { Raychowdhury, J. Stryker, Phys. Rev. D 101, } \\ 114502,2020)\end{gathered}$

Loop-String-Hadron (LSH) formulation of SU(2) LGT

The LSH formulation provides a way out:

Kogut-Susskind

$\left|n^{1}, n^{2}\right\rangle \otimes\left|j, m, m^{\prime}\right\rangle \otimes\left|n^{1}, n^{2}\right\rangle$ $n^{1}, n^{2} \in\{0,1\}, m, m^{\prime} \in\{-j, \ldots, j-1, j\}$

$$
G^{a}(n)=\sum_{i}\left[E_{L}^{a}(n, I)-E_{R}^{a}(n-i, i)\right]-\psi(n)^{\dagger} \frac{\sigma^{a}}{2} \psi(n)
$$

Gauss'
Law:

$$
\left[G^{a}, G^{b}\right]=i f_{c}^{a b} G^{c} \neq 0 \quad(!)
$$

(see \#95, I. Raychowdhury)

LSH

$$
\begin{aligned}
& \left|n_{i}, n_{o}, n_{l}\right\rangle \otimes\left|n_{i}, n_{o}, n_{l}\right\rangle \\
& n_{i}, n_{o} \in\{0,1\}, n_{l} \in\{0,1,2, \ldots\}
\end{aligned}
$$

$$
\begin{aligned}
& \quad N_{L}(n)=N_{R}(n+1) \\
& N_{L}=n_{l}+n_{o}\left(1-n_{i}\right) \\
& N_{R}=n_{l}+n_{i}\left(1-n_{o}\right)
\end{aligned}
$$

In this work

We build an MPS for 1+1D SU(2) LGT in the LSH formulation.
$\left.|\psi\rangle=\left.\sum_{\left\{i_{1}, \ldots, i_{N}\right\}}\left[\left(A_{1}\right)_{i 1}^{v_{1}} \ldots\left(A_{x}\right)_{i_{x}}^{v_{x-1} v_{x}} \ldots\left(A_{N}\right)_{i_{N}}^{v_{N-1}}\right]\right|_{1} i_{2} \ldots i_{x} \ldots i_{N}\right\rangle$

Benchmarks: (preliminary)

- Continuum ground state energy
- Continuum vector mass (1st excited state)
- Real-time dynamics

Continuum limits: Ground state energy

In 1+1D, it is predicted that the $\mathrm{EO} /(2 \mathrm{Nx}) \rightarrow-2 / \pi$. For finite lattices, energy density goes as: $\mathrm{EO} /(2 \mathrm{Nx}) \sim \mathrm{a}+\mathrm{b} / \mathrm{N}+\mathrm{c} / \mathrm{N}^{\wedge} 3+\ldots$

We fit the finite-lattice energies to a cubic function that mirrors the above series (up to $\mathrm{N}=160$ sites). The $\mathrm{x}=1 /(\mathrm{ga})$ limit fits well to a quadratic function.

Continuum limits: Ground state energy

Continuum limits: Vector mass

In the limit of strong coupling, it is predicted that $\mathrm{M}_{1} / \mathrm{g} \sim(\mathrm{m} / \mathrm{g})^{v}$ where $v=2 / 3$.

In the weak coupling limit, M_{1} / g-> $2 \mathrm{~m} / \mathrm{g}$.

Our numerics are consistent with previous studies. (e.g. Banuls etal, PRXno.
4, (2017):041046).

Dynamics

Time Evolving Block Decimation (TEBD):

Time evolution of a quark/anti-quark pair at the ends of the chain, vs. lattice spacing x (strong \rightarrow weak coupling limit):

Dynamics

Time Evolving Block Decimation (TEBD):

Time evolution of a quark/anti-quark pair at the ends of the chain, vs. lattice spacing x:

Dynamics

Probe of string breaking vs. time
State at time t:

Compute overlap with target state:

$$
\left|\psi_{\text {target }}\right\rangle=|\ldots \ldots \ldots \ldots\rangle
$$

Outlook

- Continuum real-time dynamics
- There is a natural generalization to 2+1D using a PEPS construction. All operators are local and gauge-invariant.
- Tensor networks can provide a blueprint for quantum state preparation.

LSH Formalism: 2+1 d

Matter site

$\sim\left|\ell_{p q}, \ell_{q r}, \ell_{r p}\right\rangle$

Matter-Gauge interactions are same as in 1d

Thank you!

