Investigating a Renormalization Group Multigrid Approach for Domain Wall Fermions

Lattice 2021
July 29, 2021

Duo Guo and Robert Mawhinney
Columbia University
RIKEN-BNL-Columbia Collaboration

The ensembles used in this work were produced by Jiqun Tu.

The RBC \& UKQCD collaborations

UC Berkeley/LBNL
Aaron Meyer
BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Peter Boyle (Edinburgh)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christopher Kelly
Meifeng Lin
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni
CERN
Andreas Jüttner (Southampton)

Columbia University

Norman Christ
Duo Guo
Yikai Huo
Yong-Chull Jang
Joseph Karpie
Bob Mawhinney
Ahmed Sheta
Bigeng Wang
Tianle Wang
Yidi Zhao

University of Connecticut
Tom Blum
Luchang Jin (RBRC)
Michael Riberdy
Masaaki Tomii
Edinburgh University
Matteo Di Carlo
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tim Harris
Raoul Hodgson
Nelson Lachini
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
James Richings
Azusa Yamaguchi
Andrew Z.N. Yong

KEK

Julien Frison
University of Liverpool
Nicolas Garron
Michigan State University
Dan Hoying

Milano Bicocca
Mattia Bruno
Peking University
Xu Feng
University of Regensburg
Davide Giusti
Christoph Lehner (BNL)
University of Siegen
Matthew Black
Oliver Witzel
University of Southampton
Nils Asmussen
Alessandro Barone
Jonathan Flynn
Ryan Hill
Rajnandini Mukherjee
Chris Sachrajda
University of Southern Denmark Tobias Tsang

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

Motivation

- RBC-UKQCD ensemble generation using CG in production
* Shamir Domain wall and Mobius Domain Wall fermions used.
* Many optimizations employed: Hasenbusch masses, force gradient integrator, optimized code, ...
- In HMC/RHMC, no effective multigrid solver for (M)DWF to date
* Setup time for Hierarchically Deflated CG (Boyle) can be amortized during a trajectory, but no net speed-up (Boyle, McGlynn)
* In the next talk, Peter Boyle will talk about the general status and report on his efforts to combine multigrid ideas and domain decomposition within HMC.
- Given a fine ensemble, can a coarse ensemble with $2 \times$ the lattice spacing and the same long distance physics, be used as a low-setup time preconditioner for fermion solves on the fine ensemble?
* Good a^{2} scaling of MDWF + Iwasaki + DSDR ensembles intriguing
* Jiqun Tu generated such matched ensembles for other purposes [Lattice 2017, 10.1051/epjconf/201817502006, EPJ Web Conf. 175 (2018) 02006]

Matched Fine and Coarse Ensembles

	fine	coarse	blocked coarse
	$\langle O\rangle_{f}$	$\langle O\rangle_{c}$	$\langle O\rangle_{c}^{b}$
size	$24^{3} \times 64 \times 12$	$12^{3} \times 64 \times 12$	$12^{3} \times 64 \times 12$
β	1.943	1.633	-
$a m_{l}$	0.000787	0.008521	0.007494
$a m_{h}$	0.019896	0.065073	0.064150
$a^{-1}(\mathrm{GeV})$	$2.001(18)$	$1.015(16)$	$1.010(16)$
$a m_{\text {res }}$	$0.004522(12)$	$0.007439(86)$	$0.00847(21)$
$m_{\pi}(\mathrm{MeV})$	$300(3)$	$307(5)$	$308(8)$
$m_{K}(\mathrm{MeV})$	$491(5)$	$506(8)$	$507(11)$
$m_{\Omega}(\mathrm{MeV})$	$1557(71)$	$1652(27)$	$1685(52)$
$f_{\pi}(\mathrm{MeV})$	$138(2)$	$147(2)$	$151(3)$
$f_{K}(\mathrm{MeV})$	$155(2)$	$166(3)$	$169(4)$

Blocked coarse ensemble generated from the fine ensemble with an APE style RG-blocking

$$
g_{b}\left[U_{f}\right]=\mathcal{P}\left[(1-\alpha) U_{f, 1} U_{f, 2}+\alpha C / 6\right]
$$

Jiqun Tu

Rationale

- Small $\mathrm{O}\left(\mathrm{a}^{2}\right)$ scaling violations for coarse $(1 \mathrm{GeV})$ and fine $(2 \mathrm{GeV})$ ensembles * This implies they lie on essentially the same RG trajectory.
- Simple RG blocking creates a coarse lattice from a given fine lattice
* Blocking fast to do numerically
- Since fine and blocked-coarse lattice have approximatey identical physcs, can the blocked lattice be used as a preconditioner for fine lattice DWF solves?
space of all possible actions $S[U]$
 only ID + MDWF terms $S\left[U ; \beta, m_{l}, m_{h}\right]$

Preconditioned CG

Preconditioned CG algorithm

Result: solution for $A x=b$
$r_{0}=b-A x_{0}$
$z_{0}=M^{-1} r_{0}$
$p_{0}=z_{0}$
$k=0$
while $\left|r_{k+1}\right|>\epsilon$ do

$$
\alpha_{k}=\frac{\left\langle r_{k} \mid z_{k}\right\rangle}{\left\langle p_{k}\right| A\left|p_{k}\right\rangle}
$$

Results for fine lattice CG solve with mass $=\mathrm{m}_{\mathrm{s}}$

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

$$
r_{k+1}=r_{k}-\alpha_{k} A p_{k}
$$

$$
z_{k+1}=M^{-1} r_{k+1}
$$

$$
\beta_{k}=\frac{\left\langle z_{k+1} \mid r_{k+1}\right\rangle^{\top}}{\left\langle z_{k} \mid r_{k}\right\rangle}
$$

$$
p_{k+1}=z_{k+1}+\beta_{k} p_{k}
$$

$$
k=k+1
$$

end

- Working with $A=D^{\dagger} D$
- Precondition with fine lattice eigenvectors

$4 \times$ fewer iterations even with quark mass of m_{s}

$$
M^{-1}=a+b\left(1+\sum_{i}^{N}\left|v_{h, i}><v_{h, i}\right|\left(\frac{1}{\lambda_{h, i}}-1\right)\right)
$$

Coarse Eigenvector Preconditioning

Want to change from fine eigenvector $\mathrm{v}_{\mathrm{h}, \mathrm{i}}$ preconditioner

$$
M^{-1}=a+b\left(1+\sum_{i}^{N}\left|v_{h, i}><v_{h, i}\right|\left(\frac{1}{\lambda_{h, i}}-1\right)\right)
$$

to one based on coarse eigenvectors $\mathrm{v}_{2 \mathrm{~h}, \mathrm{i}}$ from blocked coarse lattice

$$
M^{-1}=1+b \operatorname{PI}\left(\sum_{i}^{N}\left|\psi_{2 h, i}><\psi_{2 h, i}\right| \frac{1}{\lambda_{2 h, i}}\right) R P
$$

Work in Landau gauge

* R is a restriction operator, I is an interpolation or prolongation operator
* P is a smoother or filter

Comparing Eigenvalue Spectrum

First 100 eigenvalues

First 1000 eigenvalues

Eigenvalue densities are very similar and eigenvalues differ by $3 \times$

Comparing Eigenvectors

Calculate magnitude of inner product of fine eigenvector $\mathrm{v}_{\mathrm{h}, \mathrm{i}}$ with interpolated blocked coarse eigenector $I v_{2 h, j}$

Individual eigenvectors are not in one-to-one correspondence.

Compare Low Mode Subspace

Defining the coarse and fine lattice inverses as

$$
\begin{gathered}
S_{c}=I \sum_{i}^{N}\left|\psi_{2 h, i}\right\rangle\left\langle\psi_{2 h, i}\right| \frac{1}{\lambda_{2 h, i}} R \\
S_{f}=\sum_{i}^{N}\left|\psi_{h, i}\right\rangle\left\langle\psi_{h, i}\right| \frac{1}{\lambda_{h, i}}
\end{gathered}
$$

we calculate

$$
X=I \sum_{i}^{N}\left|\psi_{2 h, i}\right\rangle\left\langle\psi_{2 h, i}\right| \frac{1}{\lambda_{2 h, i}} R \sum_{j}^{N}\left|\psi_{h, j}\right\rangle\left\langle\psi_{h, j}\right| \lambda_{h, j}
$$

If the subspaces were indentical and complete, we would find $\mathrm{X}=$ the identity

Comparison of Low Mode Subspaces

$$
X=I \sum_{i}^{N}\left|\psi_{2 h, i}\right\rangle\left\langle\psi_{2 h, i}\right| \frac{1}{\lambda_{2 h, i}} R \sum_{j}^{N}\left|\psi_{h, j}\right\rangle\left\langle\psi_{h, j}\right| \lambda_{h, j}
$$

Plots of X show it is primarily diagonal

Individual eigenvectors are not in one-to-one correspondence, but the coarse low mode approximation to the inverse is quite similar to the high mode one.

Coarse Preconditioner

$$
M^{-1}=1+b P I\left(\sum_{i}^{N}\left|\psi_{2 h, i}><\psi_{2 h, i}\right| \frac{1}{\lambda_{2 h, i}}\right) R P
$$

1000 coarse eigenvectors No filter, $\mathrm{P}=1$
Some improvement

1000 coarse eigenvectors
Use fine eigenvectors for filter
$4 \times$ improvement
$P=\sum_{i}^{N}\left|\psi_{h, i}><\psi_{h, i}\right|$

Exploring Various Filters/Smoothers

- Have tried Jacobi solver and Chebyshev polynomial filter as smoothers.
- Chebyshev polynomials work better in the smoother than Jacobi
- The total count of $D^{\dagger} D$ only modestly below the unpreconditioned case

Use these 5 steps as the preconditioner, setting $u=0$ in step 1 .

Jacobi and Chebyshev used for P

1) $u=P(r, u)$ (pre-smoothing)
2) $d=R\left(A_{h} u-r\right)$
3) $v=A_{2 h}^{-1} d$
4) $u=u-b I v$
5) $u=P(r, u)$ (post-smoothing)

$100 \mathrm{D}^{\dagger} \mathrm{D}$ applications used in inner solver so total $D^{\dagger} D$ count is about 1500 , similar to the 2000 iterations for CG.

Coarse and fine eigenmodes differ in 5th dimension

Summary

- APE-smearing style blocking produces a coarse lattice with $2 \times$ the lattice spacing
- Low mode subspace on coarse lattice can be prolongated to a good approximation to low mode subspace on fine latice.
- Using low mode subspace as a preconditioner for CG increases converence rate - better results possible for $m_{u d}$ than for m_{s}, as used here.
- Have tried various high-mode filters/smoothers without much improvement.
- 5d structure of fine and coarse modes differs - perhaps a direction for improvement

