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Motivation

RBC-UKQCD ensemble generation using CG in production
* Shamir Domain wall and Mobius Domain Wall fermions used.

* Many optimizations employed: Hasenbusch masses, force gradient inte-
grator, optimized code, ...

In HMC/RHMC, no effective multigrid solver for (M)DWF to date

*  Setup time for Hierarchically Deflated CG (Boyle) can be amortized during
a trajectory, but no net speed-up (Boyle, McGlynn)

* In the next talk, Peter Boyle will talk about the general status and report
on his efforts to combine multigrid ideas and domain decomposition within
HMC.

Given a fine ensemble, can a coarse ensemble with 2x the lattice spacing and
the same long distance physics, be used as a low-setup time preconditioner
for fermion solves on the fine ensemble?

*  Good a? scaling of MDWF + Iwasaki + DSDR ensembles intriguing

* Jigun Tu generated such matched ensembles for other purposes [Lattice
2017, 10.1051/epjconf/201817502006, EPJ Web Conf. 175 (2018) 02006]
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Matched Fine and Coarse Ensembles

blocked
fine coarse coarse
(O)f (0)c (0);
size 243 %64 x12 [ 122 x64x12 | 120 x 64 x 12
B 1.943 1.633 -
am; 0.000787 0.008521 0.007494
amy, 0.019896 0.065073 0.064150
“a 1(GeV) | 2.001(18) 1.015(16) 1.010(16)
am,es | 0.004522(12) | 0.007439(86) | 0.00847(21)
my(MeV) 300(3) 307(5) 308(8)
mxg(MeV) 491(5) 506(8) 507(11)
mqo(MeV) 1557(71) 1652(27) 1685(52)
fr(MeV) 138(2) 147(2) 151(3)
fx(MeV) 155(2) 166(3) 169(4)
Blocked coarse ensemble generated from the fine ensemble with an APE style
RG-blocking
. »
Ufl Uf’2 L
C=> U4 U g ~ . g
H gb[Uf] ZP[(l—Oé)Uf,lUf’z—i-OéC/G]
: Usa ” Uss ” Jiqun Tu



Rationale

Small O(a?) scaling violations for coarse (1 GeV) and fine (2 GeV) ensembles

*

This implies they lie on essentially the same RG trajectory.

Simple RG blocking creates a coarse lattice from a given fine lattice

*

Blocking fast to do numerically

Since fine and blocked-coarse lattice have approximatey identical physcs, can
the blocked lattice be used as a preconditioner for fine lattice DWF solves?

space of all possible actions S[U]

ﬁamhmha"'

hyperplane of actions consist of
only ID+MDWF terms S[U; 8, m;, mp]



Preconditioned CG

Preconditioned CG algorithm Results for fine lattice CG solve

with mass = m

Result: solution for Ax = b S

ro = b — AX()
z0=Mrg
Po = 20
k=0
while |7;41| > e do
_ _(rilze)

Yk = rlAlpey
Xk+1 = Xk T Ak Pk
Y4l =Tk — Ak Api

-1
Zitl = M~ rpsq
Bi = Gia1lres)
k (zk|ri)

P+l = Zk+1 + PrPk

k=k+1
end \ /

«  Working with A= DTD 4x fewer iterations even

" o g . . with quark mass of mg
* Precondition with fine lattice eigenvectors




Coarse Eigenvector Preconditioning

Want to change from fine eigenvector v, ; preconditioner
N
1

Mt =a+b(1+ Z (VR >< vh,i\()\— — 1))

to one based on coarse eigenvectors v,,, ; from blocked coarse lattice

1

2h,i

N
-1 _ : :
M =1+ bPI(Z W2ni >< Wanil——)RP

Work in Landau gauge

* R is a restriction operator, I is an interpolation or prolongation operator

* P 1s a smoother or filter



Comparing Eigenvalue Spectrum

First 100 eigenvalues First 1000 eigenvalues

Eigenvalue densities are very similar and eigenvalues differ by 3x



Comparing Eigenvectors

Calculate magnitude of inner product of fine eigenvector v, . with interpolated
blocked coarse eigenector Iv2h’j

Individual eigenvectors are not in one-to-one correspondence.



Compare Low Mode Subspace

Defining the coarse and fine lattice inverses as

= IZ |w2hz><w2hl|

/l2h ]

Sf Z'lﬁhl><whl /lhz

we calculate

RZW’h])(%ﬁth/th

Aop.i

N
X = IZ Yo, (Wan,il

If the subspaces were indentical and complete, we would find X = the identity
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Comparison of Low Mode Subspaces

N
X=IZ|¢2h,i><lﬁ2hz RZWhﬂ(WhJMhJ

/th ]

Plots of X show it is primarily diagonal

First 100 eigenvalues First 1000 eigenvalues

Individual eigenvectors are not in one-to-one correspondence, but the coarse low

mode approximation to the inverse is quite similar to the high mode one. "



Coarse Preconditioner

N
—1 . ) .
M =1+ bPl(Z \Woni >< WZh,z|/l

1000 coarse eigenvectors
No filter, P = 1
Some improvement

1

2h,i

)RP

1000 coarse eigenvectors
Use fine eigenvectors for filter
4x improvement

N
P = Z Whi >< Yl
:
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Exploring Various Filters/Smoothers

« Have tried Jacobi solver and Chebyshev polynomial filter as smoothers.
» Chebyshev polynomials work better in the smoother than Jacobi

. The total count of DTD only modestly below the unpreconditioned case

Use these 5 steps as the preconditioner,
setting u = 0 in step 1.

Jacobi and Chebyshev used for P

1) u = P(r,u) (pre-smoothing)
2)d =R(Apu—r)
3)v=A5,d

Nu=u->blv

100 DTD applications used in inner
solver so total DTD count is about 1500,
similar to the 2000 iterations for CG.

5)u = P(r,u) (post-smoothing)
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Coarse and fine eigenmodes differ in 5th dimension
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Summary

APE-smearing style blocking produces a coarse lattice with 2x the lattice spac-
Ing

Low mode subspace on coarse lattice can be prolongated to a good approxi-
mation to low mode subspace on fine latice.

Using low mode subspace as a preconditioner for CG increases converence
rate - better results possible for m , than for m., as used here.

Have tried various high-mode filters/smoothers without much improvement.

5d structure of fine and coarse modes differs - perhaps a direction for
improvement
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