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Motivation
•	 RBC-UKQCD ensemble generation using CG in production

*	 Shamir Domain wall and Mobius Domain Wall fermions used.

*	 Many optimizations employed:  Hasenbusch masses, force gradient inte-
grator, optimized code, ...

•	 In HMC/RHMC, no effective multigrid solver for (M)DWF to date

*	 Setup time for Hierarchically Deflated CG (Boyle) can be amortized during 
a trajectory, but no net speed-up (Boyle, McGlynn)

*	 In the next talk, Peter Boyle will talk about the general status and report 
on his efforts to combine multigrid ideas and domain decomposition within 
HMC.

•	 Given a fine ensemble, can a coarse ensemble with 2× the lattice spacing and 
the same long distance physics, be used as a low-setup time preconditioner 
for fermion solves on the fine ensemble?

*	 	Good a2 scaling of MDWF + Iwasaki + DSDR ensembles intriguing

*	 Jiqun Tu generated such matched ensembles for other purposes  [Lattice 
2017, 10.1051/epjconf/201817502006, EPJ Web Conf. 175 (2018) 02006]
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hOi 5 hOi2 hOi1
2

size 24
3 ⇥ 64 ⇥ 12 12

3 ⇥ 64 ⇥ 12 12
3 ⇥ 64 ⇥ 12

V 1.943 1.633 -
0<; 0.000787 0.008521 0.007494
0<⌘ 0.019896 0.065073 0.064150

0
−1(GeV) 2.001(18) 1.015(16) 1.010(16)
0<A4B 0.004522(12) 0.007439(86) 0.00847(21)

<c(MeV) 300(3) 307(5) 308(8)
< (MeV) 491(5) 506(8) 507(11)
<⌦(MeV) 1557(71) 1652(27) 1685(52)
5c(MeV) 138(2) 147(2) 151(3)
5 (MeV) 155(2) 166(3) 169(4)

Table 5.1: Observables from the fine, coarse and blocked coarse ensembles. The close values show
that the ensembles lie on the renormalization group trajectory. The results are quoted from [35].

utilize the blocked ensemble successfully, there has to be a configuration to configuration corre-

spondence, not just the correspondence between the physical quantities.

Throughout the chapter, we will use the fine ensemble and the blocked coarse ensemble from

[35]. For the rest of the chapter We will call the lattices in the blocked coarse lattices as coarse

lattices for convenience because we will only use the blocked coarse ensemble.

5.2 An overview of the approaches

In this section, we give a brief overview of the methods that will be used in this chapter. The

details of the methods and the results will be explained in the rest of the chapter.

The most obvious character in this chapter is that we utilize two lattices, one fine lattice and

one coarse lattice, and we will use the coarse lattice to solve the low-mode part of the fine lattice.

The idea is also known as the multigrid method. Currently there are other people [36][37] who are

also using the idea to solve the lattice Dirac equation. There is a significant difference between

our approach and the methods in [36][37]. In [36][37], the coarse gauge fields are not constructed

and the operator on the coarse lattice is obtained by restricting the operator on the fine lattice. In

our case, we have the gauge fields on the coarse lattice by following the renormalization group

trajectory. The operator on the coarse lattice is constructed from the gauge fields on the coarse
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Matched Fine and Coarse Ensembles

blocking kernel, which carries the transformation on this RG trajectory, exists. This latter topic is the
subject of this report.

We start with the pair of ID+MDWF ensembles shown in Table 1. These have mπ ∼ 300 MeV,
physical kaon masses, lattice spacings that differ by a factor of 2 and essentially the same physical
volume. We refer to these as the coarse and fine ensembles, with actions S c and S f respectively,
which are both ID+MDWF actions. From the table one can see that they have the same physics at the
5% level and this agreement could be made closer by more careful tuning of the input parameters, but
this precision is accurate enough for this study.

In general, a blocking kernel G[Uc,U f ] [2] will map a fine configuration with links U f to a coarse
configuration with links Uc. The action for the blocked coarse lattice, S b

c[Uc] is given by

e−S b
c [Uc] ∝

∫
[dU f ]e−S f [U f ]G[Uc,U f ]. (2)

Here we seek a numerically tractable blocking kernel that produces a blocked coarse lattice, with ac-
tion S b

c[Uc], that is as close as possible to S c[Uc]. We will work with a coarse and a fine ensemble
whose lattice spacings differ by a factor of essentially 2. Since we will not have a closed form ex-
pression for S b

c[Uc], we will use measurements of physical quantities on the blocked, coarse lattice
as a measure of the agreement between it and the original coarse action ensemble. Figure 1 gives a
diagram showing our strategy.

Sf [Uf ]
good scaling property

Sc[Uc]

blocking kernel
G[Uc, Uf ]

Sb
c [Uc]

compare low energy meson
observables and NPR factors

Figure 1. Strategy of our comparison.

A general blocking kernel G[Uc,U f ] is a functional defined as a product of delta functions, with
arguments which are SU(3) links from both the coarse and fine lattice, denoted by Uc and U f , respec-
tively.

G[Uc,U f ] =
∏

x,µ

δ
(
Uc(x, µ) − gb[U f ; x, µ]

)
. (3)

Here gb[U f ; x, µ] is a function which determines the blocking kernel. Figure 2 shows the blocking
kernel we experiment with in this paper. The kernel is similar to the well known APE smearing
method, except that it produces a coarse ensemble link from a pair of links in the fine lattice, plus
staples spanning the two fine-lattice links. α is an adjustable parameter which we will determine later.

•
Uf,1

•
Uf,2

•

→ •

gb[Uf ] = P[(1− α)Uf,1Uf,2 + αC/6]

•C =
∑

µ

•

Uf,3

•
Uf,4

•
Uf,5

••

Uf,6

•

Figure 2. Single-step APE-like blocking kernel.

2 Numerical Methods

We start by generating a coarse and fine ensemble with the ID+MDWF actions, whose lattice spacings
differ by a factor of 2. As mentioned, the RBC and UKQCD Collaborations have seen small O(a2)
errors for this action. To make our studies easier, we use smaller volumes and target mπ ∼ 300 MeV.
Table 1 shows the results for basic observables on these ensembles. The lattice spacing comes from√

t0 and w0 measurements and we have used the global fits results[1] to determine the input quark
masses. Our input quark masses could be refined to reduce the 2 − 7% errors seen in the table to
perhaps below 3%, but we believe this agreement is accurate enough for our current purposes. Both
ensembles have physical spatial volumes of about (2.4 fm)3.

〈O〉c 〈O〉 f % diff.

size 123 × 32 × 12 243 × 64 × 12 −
β 1.633 1.943 −

aml 0.008521 0.000787 −
amh 0.065073 0.019896 −

a−1[GeV] 1.015(16) 2.001(18) −
amres 0.007439(86) 0.004522(12) −

mπ[MeV] 307(5) 300(3) 2.3

mK[MeV] 506(8) 491(5) 3.0

mΩ[MeV] 1652(27) 1557(71) 5.9

fπ[MeV] 147(2) 138(2) 6.3

fK[MeV] 166(3) 155(2) 6.8

Table 1. Parameters and measurements of the fine and coarse lattices. The lattice spacing comes from
√

t0 and
w0 measurements.

Figure 3 allows us to further explain our next numerical test. The shaded plane is the space of
all ID+MDWF actions, and the points locate our coarse and fine ensembles. A general RG blocking
of the fine lattice will lead out of the plane, as shown by the dashed line. Assuming perfect scaling
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Rationale
•	 Small O(a2) scaling violations for coarse (1 GeV) and fine (2 GeV) ensembles

*	 This implies they lie on essentially the same RG trajectory.

•	 Simple RG blocking creates a coarse lattice from a given fine lattice

*	 Blocking fast to do numerically

•	 Since fine and blocked-coarse lattice have approximatey identical physcs, can 
the blocked lattice be used as a preconditioner for fine lattice DWF solves?

between the coarse and fine ensemble, there is some RG blocking of the fine lattice which will remain
in the ID+MDWF plane; our task is to see if we can get a good approximation to this RG blocking
from our single-step APE-like blocking kernel.

β,ml,mh, · · ·

•

•

•

•

Sf [Uf ]

Sc[Uc]

Sb
c [Uc]

G[Uc, Uf ]

compare

space of all possible actions S[U ]

hyperplane of actions consist of
only ID+MDWF terms S[U ;β,ml,mh]

Figure 3. Illustration of the comparison. A general blocking kernel G[Uc,U f ] will lead the fine lattice action out
of the hyperplane of actions consist of only ID+MDWF terms, as shown by the dashed line. There exist some
blocking kernel which will keep the fine action in the ID+MDWF hyperplane, giving the perfect scaling between
the coarse and fine ensemble.

A simple minded way to proceed would be to choose a value for α, block the fine ensemble and
measure physics observables on the resulting blocked, coarse ensemble and compare with the coarse
ensemble. We believe a better way to do this is to utilize the demon algorithm[3]. Applying this
algorithm to the lattices in an ensemble, one can find the coefficients (couplings) for any term in the
action which could have appeared in the generation of the ensemble, or in an effective representation of
the action. Here we are generating ensembles including fermions and we can use the demon algorithm
to find an action, expressed as a sum of Wilson loops, that would produce the same ensemble.

Given a configuration generated according to some action, possibly including fermions, we can
introduce a series of demon variables to determine the underlining βi in an expansion of the action in
terms of a set of Wilson loops, denoted by S i. These terms can be the plaquette(P), rectangular(R),
chair loop(C), twist loop(T ), etc.

∫
[DU]

∫ ∏

i

[dEi] exp


−
∑

i

(βiS i[U] + βiEi)


 .

The update scheme for the demon consists of two parts:

1. update U’s only.

2. update U’s and Ei’s at the same time while keeping S i+Ei constant. In this case the accept/reject
step does not require knowledge of βi’s.

4
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Preconditioned CG

4× fewer iterations even
with quark mass of ms

Preconditioned CG algorithm Results for fine lattice CG solve
with mass = ms

Figure 52: Deflation with fine eigenvectors with equation 33

Figure 53: | < I ⇤ evec2h, evech > | for 10 and 100 eigenvectors
.

Figure 54: | < I ⇤ evec2h, evech > | for 1000 eigenvectors

40

lowest eigenvalue is 1.236E-3. From these numbers, we can infer that the highest
eigenvalue is around 524.8 (Grid gives an estimation of 450. In Lanczos, I need
to specify the max eigenvalue for Chebyshev polynomial. Several experiments
showed that the largest eigenvalue is larger than 500).

For RGPCG, a = 3, b = 1, 1000 eigenvectors for coarse mass 0.065. The
residual at iteration 500 is 5.63057E-05. The residual at iteration 1414 is 1.0E-
06. Assuming that the max eigenvalue is still 524.8, the e↵ective lowest eigen-
value is 0.0025. This means that the modes of the fine lattice with eigenvalue
smaller than 0.0025 are deflated by RGPCG. For fine lattice, the number of
eigenvectors whose eigenvalues are in the range 0.001236 to 0.0025 is 60. So 60
eigenvectors get deflated in this sense. Another way to think about it is that
the lowest eigenvalue is multiplied by 2. It’s unclear if this is a pure coincidence.
I’m not sure if the coarse eigenvalues are relevant but the lowest eigenvalue is
0.00544748 and the largest eigenvalue is around 500.

Compare with fine eigenvectors for preconditioning

We can also use the fine eigenvectors to test preconditioning and compare
with the results in the previous section. We use the preconditioner:

M
�1 = a+ b(1 +

NX

i

|vh,i >< vh,i|(
1

�h,i

− 1)) (33)

Note the equation above is very similar to equation 27 except hat we use fine
eigenvectors and we don’t have interpolation and restriction operators. The
results for di↵erent number of eigenvectors are in Fig 52. Firstly, for fine eigen-
vectors, changing a and b has little influence on the convergence. This is because
the formulae changes the lowest eigenvalues to a larger value but doesn’t a↵ect
the rest of the spectrum. Secondly, when the number of eigenvectors used
is 60, the convergence is similar to the coarse deflation case for 1000 coarse
eigenvectors, a = 3, b = 1 and coarse mass 0.065. This agrees with the previous
discussion. However, it can be seen that with more fine eigenvectors, the conver-
gence rate is improved significantly because more low eigenvalues are deflated.
I don’t understand why the coarse deflation doesn’t work so well as the fine
eigenvectors.

We hope to approximate equation 33 with the coarse eigenvectors. Therefore,
we do a comparison between the coarse eigenvectors and the fine eigenvectors.
In Fig 53 to Fig 54, | < I ⇤ evec2h, evech > | is plotted for di↵erent number of
eigenvectors. It’s important to note that this graph is not normalized according
to the norm of evech and I ⇤ evec2h. The norm of evech is 1 and the norm
of I ⇤ evec2h is around 3. The values in the graph can be as high as 0.9 but
if it’s normalized, it’s at most 0.3. Therefore, there is no strong one-to-one
correspondence between the coarse and fine eigenvectors. However, it can be
seen that for the first 100 fine eigenvectors, each fine eigenvector corresponds to
a small number (-20) of coarse eigenvectors. However, for the eigenvectors with
index 100-1000, there is vague correspondence.

As a side product, we also plot the inner product between coarse eigenvectors
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low-order polynomials that can fit the spectrum well [29]. In the case of lattice QCD, the common

behavior is that the algorithm converges fast initially and then the convergence rate approaches the

limit.

Since the conjugate gradient algorithm can be slow when the condition number is large. "Pre-

conditioning" is invented to reduce the condition number. It means that a variation of the matrix

instead of the original matrix is used in the algorithm to reduce the condition number. In particular,

note that the solution of 𝐴G = 1 is equivalent to the solution of:

(⇢�1
𝐴(⇢�1)) )⇢)

G = ⇢
�1
1 (4.2)

Therefor, one can solve for ⇢)
G with matrix ⇢

�1
𝐴(⇢�1)) and then find G. By choosing a proper

⇢ , the condition number of 𝐴 can be reduced and the convergence rate can be improved. In

practice, it’s found that the conjugate gradient algorithm for ⇢
�1
𝐴(⇢�1)) can be simplified as

the preconditioned conjugate gradient algorithm by using the matrix " = ⇢⇢
) . The matrix " ,

sometimes "
�1, is called the preconditioner. The algorithm is shown below.

Algorithm 2: The preconditioned conjugate gradient algorithm
Result: solution for 𝐴G = 1

A0 = 1 � 𝐴G0

I0 = "
�1
A0

?0 = I0

: = 0

while |A:+1 | > n do
U: =

hA: |I: i
h?: |𝐴|?: i

G:+1 = G: + U: ?:

A:+1 = A: � U: 𝐴?:

I:+1 = "
�1
A:+1

V: =
hI:+1 |A:+1i
hI: |A: i

?:+1 = I:+1 + V: ?:

: = : + 1

end

The convergence rate is now related to the condition number of "�1
𝐴. The benefit from the

convergence rate will justify the cost of "
�1 when the convergence rate is fast enough and the

49

•	 Working with A = D†D

•	 Precondition with fine lattice eigenvectors
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Coarse Eigenvector Preconditioning

Want to change from fine eigenvector vh,i preconditioner

                    

lowest eigenvalue is 1.236E-3. From these numbers, we can infer that the highest
eigenvalue is around 524.8 (Grid gives an estimation of 450. In Lanczos, I need
to specify the max eigenvalue for Chebyshev polynomial. Several experiments
showed that the largest eigenvalue is larger than 500).

For RGPCG, a = 3, b = 1, 1000 eigenvectors for coarse mass 0.065. The
residual at iteration 500 is 5.63057E-05. The residual at iteration 1414 is 1.0E-
06. Assuming that the max eigenvalue is still 524.8, the e↵ective lowest eigen-
value is 0.0025. This means that the modes of the fine lattice with eigenvalue
smaller than 0.0025 are deflated by RGPCG. For fine lattice, the number of
eigenvectors whose eigenvalues are in the range 0.001236 to 0.0025 is 60. So 60
eigenvectors get deflated in this sense. Another way to think about it is that
the lowest eigenvalue is multiplied by 2. It’s unclear if this is a pure coincidence.
I’m not sure if the coarse eigenvalues are relevant but the lowest eigenvalue is
0.00544748 and the largest eigenvalue is around 500.

Compare with fine eigenvectors for preconditioning

We can also use the fine eigenvectors to test preconditioning and compare
with the results in the previous section. We use the preconditioner:

M
�1 = a+ b(1 +

NX

i

|vh,i >< vh,i|(
1

�h,i

− 1)) (33)

Note the equation above is very similar to equation 27 except hat we use fine
eigenvectors and we don’t have interpolation and restriction operators. The
results for di↵erent number of eigenvectors are in Fig 52. Firstly, for fine eigen-
vectors, changing a and b has little influence on the convergence. This is because
the formulae changes the lowest eigenvalues to a larger value but doesn’t a↵ect
the rest of the spectrum. Secondly, when the number of eigenvectors used
is 60, the convergence is similar to the coarse deflation case for 1000 coarse
eigenvectors, a = 3, b = 1 and coarse mass 0.065. This agrees with the previous
discussion. However, it can be seen that with more fine eigenvectors, the conver-
gence rate is improved significantly because more low eigenvalues are deflated.
I don’t understand why the coarse deflation doesn’t work so well as the fine
eigenvectors.

We hope to approximate equation 33 with the coarse eigenvectors. Therefore,
we do a comparison between the coarse eigenvectors and the fine eigenvectors.
In Fig 53 to Fig 54, | < I ⇤ evec2h, evech > | is plotted for di↵erent number of
eigenvectors. It’s important to note that this graph is not normalized according
to the norm of evech and I ⇤ evec2h. The norm of evech is 1 and the norm
of I ⇤ evec2h is around 3. The values in the graph can be as high as 0.9 but
if it’s normalized, it’s at most 0.3. Therefore, there is no strong one-to-one
correspondence between the coarse and fine eigenvectors. However, it can be
seen that for the first 100 fine eigenvectors, each fine eigenvector corresponds to
a small number (-20) of coarse eigenvectors. However, for the eigenvectors with
index 100-1000, there is vague correspondence.

As a side product, we also plot the inner product between coarse eigenvectors
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to one based on coarse eigenvectors v2h,i from blocked coarse lattice

                

Figure 5.3: An example result for the restart algorithm. The spike happens when the coarse cor-
rection is added. However, the convergence is improved because some of low modes are solved
through the coarse lattice. The overlap transformation is used to reduce the high-mode contamina-
tion and the norm of the coarse correction is adjusted. These issues will be discussed in detail in
section 5.

reduce the conditioner number. In section 6, we use the preconditioner:

"
�1 = 1 + 1%𝐼 (

#’
8

|k2⌘,8 >< k2⌘,8 |
1

_2⌘,8

)'% (5.2)

where k2⌘,8 are eigenvectors on the coarse lattice, _2⌘,8 are eigenvalues on the coarse lattice and %

is the operator that filters out the high modes.
Õ

#

8
|E2⌘,8 >< E2⌘,8 | 1

_2⌘,8

is the inverse of the low-

mode part of the coarse operator. Since the low modes of the coarse operator corresponds to the

low modes of the fine operator, the second term approximately solves the low modes. Thus, the

condition number _<0G/_<8= is decreased and the algorithm would be faster. Various approaches

are tried in section 5. One example result is plotted in the left graph of Fig 5.4.

However, the filter % tends to be expensive. To make it less expensive, in section 7, a different

preconditioner is used where the filter also serves to solve the high modes of the fine lattice. Var-

ious filters are tried in section 7 and an example is shown in Fig 5.4. This method tends to have

more operations of ⇡†
⇡ compared to the method in section 6 since operations of ⇡†

⇡ are needed

in the filter. However, the number of the total iteration is much smaller because the preconditioner

changes not only _<8= but also _<0G and the condition number is reduced greatly. Because the total

62

Work in Landau gauge
*	 R is a restriction operator, I is an interpolation or prolongation operator

*	 P is a smoother or filter
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Comparing Eigenvalue Spectrum

First 100 eigenvalues First 1000 eigenvalues

Eigenvalue densities are very similar and eigenvalues differ by 3×

Figure 57: | < R ⇤ evech, evec2h > | for 100 and 1000 eigenvectors, coares mass
is 0.05
.

Figure 58: Coarse eigenvalues (cmass 0.06507) and fine eigenvalues. Left: 100
eigenvalues; right: 1000 eigenvalues
.

59, the coarse eigenvalues are linearly related with the fine eigenvalues. This
means that for cmass = 0.05, it’s possible to multiply the coarse eigenvalues by
a common factor (1/3) so that we get the fine eigenvalues . We’ll call this factor
beta.

To change the eigenvalues, we modify equation 27 to:

M
�1 = a+ bI(1 +

NX

i

|v2h,i >< v2h,i|(
1

βλ2h,i
− 1))R (34)

The residuals are plotted in Fig 60. Right now, we haven’t seen much improve-
ment from coarse mass = 0.05 and beta = 1/3. We certainly haven’t tested
more parameter spaces for a and b (a = 1 and b = 1 was tested but not plotted
because it’s worse than CG). However, I’m afraid that given the coarse eigen-
vectors don’t have a clear correspondence with the fine eigenvectors, we need to

42
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Comparing Eigenvectors

Calculate magnitude of inner product of fine eigenvector vh,i with interpolated
blocked coarse eigenector Iv2h,j

Individual eigenvectors are not in one-to-one correspondence.

Figure 52: Deflation with fine eigenvectors with equation 33

Figure 53: | < I ⇤ evec2h, evech > | for 10 and 100 eigenvectors
.

Figure 54: | < I ⇤ evec2h, evech > | for 1000 eigenvectors

40

Figure 52: Deflation with fine eigenvectors with equation 33

Figure 53: | < I ⇤ evec2h, evech > | for 10 and 100 eigenvectors
.

Figure 54: | < I ⇤ evec2h, evech > | for 1000 eigenvectors

40
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Compare Low Mode Subspace

coarse lattice and the results are similar for the fermion mass 0.05. Note that the norm of 𝐼k2⌘,8

is around 3 so the normalized inner product is at most 0.3. From Fig 5.7, it can be seen that for

the first 100 fine eigenvectors, each fine eigenvector corresponds to a small number (around 20)

of coarse eigenvectors. However, for the eigenvectors with index 100-1000, there is only vague

correspondence.

Although the one-to-one correspondence is weak, the property that we really care about is

whether the inverse of the low modes is similar for the coarse and fine lattice. To do so, we

compare two operators:

(2 = 𝐼

#’
8

|k2⌘,8ihk2⌘,8 |
1

_2⌘,8

' (5.8)

and

( 5 =
#’
8

|k⌘,8ihk⌘,8 |
1

_⌘,8

(5.9)

These are simply the inversions of the low modes of ⇡†
⇡ by using the eigenvectors. To compare

them, we can multiply (2 and (
−1

5
together and consider:

- = 𝐼

#’
8

|k2⌘,8ihk2⌘,8 |
1

_2⌘,8

'

#’
9

|k⌘, 9 ihk⌘, 9 |_⌘, 9 (5.10)

If (2 is exactly ( 5 , - would be the identity matrix. In reality, one can not examine the elements

of - one bye one. However, one can test the behavior of - in the low-mode space by computing

hk⌘,< |- |k⌘,=i for different = and <. Note hk⌘,< |- |k⌘,=i can be reduced as:

#’
9

hk⌘,= |𝐼 |k2⌘, 9 ihk2⌘, 9 |' |k⌘,<i
_⌘,<

_2⌘, 9

(5.11)

The results are plotted for in Fig 5.8 where the fermion mass is 0.05 on the coarse lattice.

Although the diagonal elements are not large, the results are diagonally dominate. The diagonal

elements are plotted in Fig 5.9. The dominance is weaker when = and < becomes large but this
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of - one bye one. However, one can test the behavior of - in the low-mode space by computing

hk⌘,< |- |k⌘,=i for different = and <. Note hk⌘,< |- |k⌘,=i can be reduced as:

#’
9

hk⌘,= |𝐼 |k2⌘, 9 ihk2⌘, 9 |' |k⌘,<i
_⌘,<

_2⌘, 9

(5.11)

The results are plotted for in Fig 5.8 where the fermion mass is 0.05 on the coarse lattice.

Although the diagonal elements are not large, the results are diagonally dominate. The diagonal

elements are plotted in Fig 5.9. The dominance is weaker when = and < becomes large but this
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Defining the coarse and fine lattice inverses as

we calculate

If the subspaces were indentical and complete, we would find X = the identity
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Comparison of Low Mode Subspaces

Figure 5.8: Results for eq. (5.9). Left: # = 100; right: # = 1000. The graphs are diagonally
dominate which means that the coarse operator is a good approximation of the fine operator in the
low-mode space.

Figure 5.9: Diagonal elements for eq. (5.9) with = = < and # = 1000

happens only after =, < > 500. This shows that the coarse operator is a good approximation of the

fine operator in the low-mode space and we should be able to utilize the coarse operator to solve

the low-mode space of the fine operator.

One can also notice that the diagonal elements change with =, <. The diagonal elements are

around 0.1 for the first 500 eigenvectors (except for the lowest a few eigenvectors) but decrease

afterwards. This means that a factor around 10 can be multiplied when (2 is used as an approxi-

mation for ( 5 in the low-mode space.
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coarse lattice and the results are similar for the fermion mass 0.05. Note that the norm of 𝐼k2⌘,8

is around 3 so the normalized inner product is at most 0.3. From Fig 5.7, it can be seen that for

the first 100 fine eigenvectors, each fine eigenvector corresponds to a small number (around 20)

of coarse eigenvectors. However, for the eigenvectors with index 100-1000, there is only vague

correspondence.

Although the one-to-one correspondence is weak, the property that we really care about is

whether the inverse of the low modes is similar for the coarse and fine lattice. To do so, we

compare two operators:

(2 = 𝐼
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|k2⌘,8ihk2⌘,8 |
1

_2⌘,8

' (5.8)

and
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#’
8

|k⌘,8ihk⌘,8 |
1

_⌘,8

(5.9)

These are simply the inversions of the low modes of ⇡†
⇡ by using the eigenvectors. To compare

them, we can multiply (2 and (
−1

5
together and consider:

- = 𝐼
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_2⌘,8

'

#’
9

|k⌘, 9 ihk⌘, 9 |_⌘, 9 (5.10)

If (2 is exactly ( 5 , - would be the identity matrix. In reality, one can not examine the elements

of - one bye one. However, one can test the behavior of - in the low-mode space by computing

hk⌘,< |- |k⌘,=i for different = and <. Note hk⌘,< |- |k⌘,=i can be reduced as:

#’
9

hk⌘,= |𝐼 |k2⌘, 9 ihk2⌘, 9 |' |k⌘,<i
_⌘,<

_2⌘, 9

(5.11)

The results are plotted for in Fig 5.8 where the fermion mass is 0.05 on the coarse lattice.

Although the diagonal elements are not large, the results are diagonally dominate. The diagonal

elements are plotted in Fig 5.9. The dominance is weaker when = and < becomes large but this
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Plots of X show it is primarily diagonal

First 100 eigenvalues First 1000 eigenvalues

Individual eigenvectors are not in one-to-one correspondence, but the coarse low 
mode approximation to the inverse is quite similar to the high mode one.
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Coarse Preconditioner

Figure 5.18: Left: the residuals when there is no filter; Right: the residuals when the exact filter
is used. Comparing the two graphs, we see that the high mode filter is important to improve the
performance of the preconditioner. 1 = 9 and 1 = 27 are optimal for the right graph which agrees
with our understanding about the low-mode correspondence between the coarse operator and the
fine operator.

eigenvectors of the fine operator and we have the filter:

% =
#’
8

|k⌘,8 >< k⌘,8 | (5.24)

The results are in Fig 5.18. The left graph is for the residuals when there is no filter and the right

graph is the case when there is the exact filter. It can be seen that although around 400 iterations

are saved when there is no filter, the convergence rate is much faster when there is the exact filter.

In fact, the convergence rate of the right graph in Fig 5.18 approaches the convergence rate when

fine eigenvectors are used instead of the coarse eigenvectors. This means that if a good filter is

used, the coarse eigenvectors are almost perfect as the replacement of the fine eigenvectors. Lastly,

note that the best convergence rate is achieved when 1 = 9 or 1 = 27. This agrees with Fig 5.9.

Two kinds of filters are in the previous section, the overlap transformation and the Chebyshev

polynomials. Although they are promising as filters, they are too expensive.

To filter the high modes effectively, we need insights to the properties of the high modes. Con-

sidering that QCD is approximately free in high energy, the eigenvectors with high eigenvalues,

or the high modes should be approximately plain wave and should be filtered by Fourier transfor-

82

1000 coarse eigenvectors
No filter, P = 1

Some improvement

Figure 5.3: An example result for the restart algorithm. The spike happens when the coarse cor-
rection is added. However, the convergence is improved because some of low modes are solved
through the coarse lattice. The overlap transformation is used to reduce the high-mode contamina-
tion and the norm of the coarse correction is adjusted. These issues will be discussed in detail in
section 5.

reduce the conditioner number. In section 6, we use the preconditioner:

"
�1 = 1 + 1%𝐼 (

#’
8

|k2⌘,8 >< k2⌘,8 |
1

_2⌘,8

)'% (5.2)

where k2⌘,8 are eigenvectors on the coarse lattice, _2⌘,8 are eigenvalues on the coarse lattice and %

is the operator that filters out the high modes.
Õ

#

8
|E2⌘,8 >< E2⌘,8 | 1

_2⌘,8

is the inverse of the low-

mode part of the coarse operator. Since the low modes of the coarse operator corresponds to the

low modes of the fine operator, the second term approximately solves the low modes. Thus, the

condition number _<0G/_<8= is decreased and the algorithm would be faster. Various approaches

are tried in section 5. One example result is plotted in the left graph of Fig 5.4.

However, the filter % tends to be expensive. To make it less expensive, in section 7, a different

preconditioner is used where the filter also serves to solve the high modes of the fine lattice. Var-

ious filters are tried in section 7 and an example is shown in Fig 5.4. This method tends to have

more operations of ⇡†
⇡ compared to the method in section 6 since operations of ⇡†

⇡ are needed

in the filter. However, the number of the total iteration is much smaller because the preconditioner

changes not only _<8= but also _<0G and the condition number is reduced greatly. Because the total
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1000 coarse eigenvectors
Use fine eigenvectors for filter

4× improvement

Figure 5.18: Left: the residuals when there is no filter; Right: the residuals when the exact filter
is used. Comparing the two graphs, we see that the high mode filter is important to improve the
performance of the preconditioner. 1 = 9 and 1 = 27 are optimal for the right graph which agrees
with our understanding about the low-mode correspondence between the coarse operator and the
fine operator.

eigenvectors of the fine operator and we have the filter:

% =
#’
8

|k⌘,8 >< k⌘,8 | (5.24)

The results are in Fig 5.18. The left graph is for the residuals when there is no filter and the right

graph is the case when there is the exact filter. It can be seen that although around 400 iterations

are saved when there is no filter, the convergence rate is much faster when there is the exact filter.

In fact, the convergence rate of the right graph in Fig 5.18 approaches the convergence rate when

fine eigenvectors are used instead of the coarse eigenvectors. This means that if a good filter is

used, the coarse eigenvectors are almost perfect as the replacement of the fine eigenvectors. Lastly,

note that the best convergence rate is achieved when 1 = 9 or 1 = 27. This agrees with Fig 5.9.

Two kinds of filters are in the previous section, the overlap transformation and the Chebyshev

polynomials. Although they are promising as filters, they are too expensive.

To filter the high modes effectively, we need insights to the properties of the high modes. Con-

sidering that QCD is approximately free in high energy, the eigenvectors with high eigenvalues,

or the high modes should be approximately plain wave and should be filtered by Fourier transfor-

82
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Exploring Various Filters/Smoothers
•	 Have tried Jacobi solver and Chebyshev polynomial filter as smoothers.

•	 Chebyshev polynomials work better in the smoother than Jacobi

•	 The total count of D†D only modestly below the unpreconditioned case

Figure 5.25: Left: Chebyshev polynomials are applied on the error during the inner solver; right:
(1 � 𝐴

_
): is applied to the error during the inner solver, _ = 300. There are 100 iterations in the

inner solver. By using the solver which utilizes the Chebyshev polynomials, the convergence rate
is four times faster compared to the case where Jacobi iteration is used.

where )= are Chebyshev polynomials and the argument of )= should be (1� 𝐴

_
). _ should be larger

than _<0G

2
. With _ = _<0G , the minimum point is at _<0G . However, with _ slightly larger than

_<0G

2
, the range of high modes that are filtered is largest as shown in Fig 5.14. The detailed choices

of U and V are calculated in the appendix.

Similar to the Jacobi iteration, the polynomial solvers can solve the equations. The results are

plotted in Fig 5.24. The solvers are fast initially when they work on the high modes and become

slow with the low modes. Although the polynomial solver with the Chebyshev polynomials con-

verges slowly, it should be noted that Chebyshev polynomials removes the high modes faster as

shown in Fig 5.14.

In Fig 5.25, we show the results where we use the polynomial solvers in the preconditioner. It

can be seen that by utilizing the Chebyshev polynomials, the algorithm is four times faster than the

algorithm where the Jacobi iteration is used in the preconditioner. However, the total number of

operations of ⇡†
⇡ is 3000 which means that it’s still not good enough.

In Fig 5.26, we use the near-null vectors to further remove the high modes. With 10 near-

null vectors, the convergence rate is much faster compared to 1 = 0 or the conjugate gradient.

Although the total number of the operations of ⇡†
⇡ is similar to the conjugate gradient, it should

92

Figure 5.21: Left: Results when the near-null vectors are used as the filter. Left: 5 near-null
vectors are used; Right: 10 near-null vectors are used. The results are for fine mass 0.000787
which is why the iteration number for CG is much larger than the other cases in this chapter. The
near-null vectors are effective in filtering out the high modes for light mass. The optimal parameter
is 1 = 1/9

saved.

5.7 Renormalization group based preconditioned conjugate gradient algorithm: using high-

mode solver in the preconditioner

In the previous section, it’s found that the high-mode filter is important to improve the algo-

rithm. However, the polynomial filters that are used in section 4 are very expensive. To solve the

issue, we apply the method in [40] where the filter also functions as a high-mode solver in the pre-

conditioner. In this method, since both high modes and low modes are solved in the preconditioner,

the convergence rate will be much better and cost of the filter could be justified. The preconditioner

is consisted of 5 steps:

1) D = %(A, D) (pre-smoothing)

2) 3 = '(𝐴⌘D � A)

3) E = 𝐴
�1

2⌘
3

4) D = D � 1𝐼E

5) D = %(A, D) (post-smoothing)

86

Use these 5 steps as the preconditioner, 
setting u = 0 in step 1.

Jacobi and Chebyshev used for P

100 D†D applications used in inner 
solver so total D†D count is about 1500, 
similar to the 2000 iterations for CG.
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Figure 5.27: Average eigenvector supports on the fifth dimension. The numbers in the legend
indicate the eigenvector index. The results show that the eigenvectors on the coarse lattice have
different structures compared to the eigenvectors on the fine lattice.

is small. Although the number of the operations of ⇡†
⇡ is close to the number of the conjugate

gradient iterations, the convergence rate is much faster and the algorithm will be beneficial when

the precision requirement is higher than 10
�6.

However, we believe that we haven’t fully harvested the power of the coarse lattice. For further

development, it’s critical to understand the source of the high modes introduced by the interpola-

tion operator. One possible source is that the coarse operator and the fine operator have different

structures in the fifth dimension. The residual mass of the coarse lattice (0.0085) is almost twice

the residual mass of the fine lattice (0.0045). This implies that the low modes of the coarse and

fine lattice have different structures in the fifth dimension. In Fig 5.27, the average norm squared

on different fifth-dimension slices are plotted. It verifies that the low modes have different fifth-

dimension dependence for the coarse lattice and the fine lattice. Since the low modes are different,

when the coarse lattice is used to solve the low modes of the fine lattice, there will be mismatch

in the results. Up till now, we have treated the problem as a four dimensional problem and we

haven’t touched the fifth dimension. We believe it’ll be important to correct the mismatch in the

fifth dimension. In addition, using more efficient high-mode solvers, possibly some solvers that

are similar to the multisplitting algorithm, may also be beneficial.
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Coarse and fine eigenmodes differ in 5th dimension
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Summary
•	 APE-smearing style blocking produces a coarse lattice with 2× the lattice spac-

ing

•	 Low mode subspace on coarse lattice can be prolongated to a good approxi-
mation to low mode subspace on fine latice.

•	 Using low mode subspace as a preconditioner for CG increases converence 
rate - better results possible for mud than for ms, as used here.

•	 Have tried various high-mode filters/smoothers without much improvement.

•	 5d structure of fine and coarse modes differs - perhaps a direction for  
improvement


