Investigating a Renormalization Group Multigrid Approach for Domain Wall Fermions

Lattice 2021 July 29, 2021

Duo Guo and Robert Mawhinney Columbia University RIKEN-BNL-Columbia Collaboration

The ensembles used in this work were produced by Jiqun Tu.

The RBC & UKQCD collaborations

<u>UC Berkeley/LBNL</u> Aaron Meyer

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>CERN</u>

Andreas Jüttner (Southampton)

Columbia University

Norman Christ Duo Guo Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Ahmed Sheta Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Michael Riberdy Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Tim Harris Raoul Hodgson Nelson Lachini Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

<u>KEK</u> Julien Frison

<u>University of Liverpool</u> Nicolas Garron

<u>Michigan State University</u> Dan Hoying

<u>Milano Bicocca</u> Mattia Bruno

<u>Peking University</u> Xu Feng

<u>University of Regensburg</u> Davide Giusti Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Nils Asmussen Alessandro Barone Jonathan Flynn Ryan Hill Rajnandini Mukherjee Chris Sachrajda

<u>University of Southern Denmark</u> Tobias Tsang

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Motivation

- RBC-UKQCD ensemble generation using CG in production
 - * Shamir Domain wall and Mobius Domain Wall fermions used.
 - * Many optimizations employed: Hasenbusch masses, force gradient integrator, optimized code, ...
- In HMC/RHMC, no effective multigrid solver for (M)DWF to date
 - * Setup time for Hierarchically Deflated CG (Boyle) can be amortized during a trajectory, but no net speed-up (Boyle, McGlynn)
 - * In the next talk, Peter Boyle will talk about the general status and report on his efforts to combine multigrid ideas and domain decomposition within HMC.
- Given a fine ensemble, can a coarse ensemble with 2× the lattice spacing and the same long distance physics, be used as a low-setup time preconditioner for fermion solves on the fine ensemble?
 - * Good a² scaling of MDWF + Iwasaki + DSDR ensembles intriguing
 - * Jiqun Tu generated such matched ensembles for other purposes [Lattice 2017, 10.1051/epjconf/201817502006, EPJ Web Conf. 175 (2018) 02006]

Matched Fine and Coarse Ensembles

			blocked
	fine	coarse	coarse
	$\langle O angle_f$	$\langle O angle_c$	$\langle O angle_c^b$
size	$24^3 \times 64 \times 12$	$12^3 \times 64 \times 12$	$12^3 \times 64 \times 12$
β	1.943	1.633	-
am _l	0.000787	0.008521	0.007494
am_h	0.019896	0.065073	0.064150
$a^{-1}(\text{GeV})$	2.001(18)	1.015(16)	1.010(16)
<i>am_{res}</i>	0.004522(12)	0.007439(86)	0.00847(21)
$m_{\pi}(\text{MeV})$	300(3)	307(5)	308(8)
$m_K(MeV)$	491(5)	506(8)	507(11)
$m_{\Omega}(\text{MeV})$	1557(71)	1652(27)	1685(52)
$f_{\pi}(\text{MeV})$	138(2)	147(2)	151(3)
$f_K(\text{MeV})$	155(2)	166(3)	169(4)

Blocked coarse ensemble generated from the fine ensemble with an APE style RG-blocking

Rationale

- Small $O(a^2)$ scaling violations for coarse (1 GeV) and fine (2 GeV) ensembles
 - * This implies they lie on essentially the same RG trajectory.
- Simple RG blocking creates a coarse lattice from a given fine lattice
 - * Blocking fast to do numerically
- Since fine and blocked-coarse lattice have approximatey identical physcs, can the blocked lattice be used as a preconditioner for fine lattice DWF solves?

space of all possible actions S[U]

Preconditioned CG

 $4 \times$ fewer iterations even with quark mass of m_s

- Working with A = D[†]D
- Precondition with fine lattice eigenvectors

$$M^{-1} = a + b(1 + \sum_{i=1}^{N} |v_{h,i}| > < v_{h,i} | (\frac{1}{\lambda_{h,i}} - 1))$$

Coarse Eigenvector Preconditioning

Want to change from fine eigenvector $v_{h,i}$ preconditioner

$$M^{-1} = a + b(1 + \sum_{i}^{N} |v_{h,i}| > < v_{h,i} | (\frac{1}{\lambda_{h,i}} - 1))$$

to one based on coarse eigenvectors $v_{2h,i}$ from blocked coarse lattice

$$M^{-1} = 1 + bPI(\sum_{i}^{N} |\psi_{2h,i}| > \langle \psi_{2h,i} | \frac{1}{\lambda_{2h,i}})RP$$

Work in Landau gauge

- * R is a restriction operator, I is an interpolation or prolongation operator
- * P is a smoother or filter

Comparing Eigenvalue Spectrum

Eigenvalue densities are very similar and eigenvalues differ by $3 \times$

Comparing Eigenvectors

Calculate magnitude of inner product of fine eigenvector $v_{h,i}$ with interpolated blocked coarse eigenector $Iv_{2h,i}$

Individual eigenvectors are not in one-to-one correspondence.

Compare Low Mode Subspace

Defining the coarse and fine lattice inverses as

$$S_{c} = I \sum_{i}^{N} |\psi_{2h,i}\rangle \langle \psi_{2h,i}| \frac{1}{\lambda_{2h,i}} R$$

$$S_f = \sum_{i}^{N} |\psi_{h,i}\rangle \langle \psi_{h,i}| \frac{1}{\lambda_{h,i}}$$

we calculate

$$X = I \sum_{i}^{N} |\psi_{2h,i}\rangle \langle \psi_{2h,i}| \frac{1}{\lambda_{2h,i}} R \sum_{j}^{N} |\psi_{h,j}\rangle \langle \psi_{h,j}| \lambda_{h,j}$$

If the subspaces were indentical and complete, we would find X = the identity

Comparison of Low Mode Subspaces

$$X = I \sum_{i}^{N} |\psi_{2h,i}\rangle \langle \psi_{2h,i}| \frac{1}{\lambda_{2h,i}} R \sum_{j}^{N} |\psi_{h,j}\rangle \langle \psi_{h,j}| \lambda_{h,j}$$

Plots of X show it is primarily diagonal

Individual eigenvectors are not in one-to-one correspondence, but the coarse low mode approximation to the inverse is quite similar to the high mode one.

Coarse Preconditioner

$$M^{-1} = 1 + bPI(\sum_{i}^{N} |\psi_{2h,i}| > < \psi_{2h,i}|\frac{1}{\lambda_{2h,i}})RP$$

Exploring Various Filters/Smoothers

- Have tried Jacobi solver and Chebyshev polynomial filter as smoothers. ۲
- Chebyshev polynomials work better in the smoother than Jacobi ۲

setting u = 0 in step 1.

2) $d = R(A_h u - r)$

3) $v = A_{2h}^{-1}d$

4) u = u - bIv

The total count of D[†]D only modestly below the unpreconditioned case •

solver so total D[†]D count is about 1500, similar to the 2000 iterations for CG.

Coarse and fine eigenmodes differ in 5th dimension

14

Summary

- APE-smearing style blocking produces a coarse lattice with 2× the lattice spacing
- Low mode subspace on coarse lattice can be prolongated to a good approximation to low mode subspace on fine latice.
- Using low mode subspace as a preconditioner for CG increases converence rate - better results possible for m_{ud} than for m_s, as used here.
- Have tried various high-mode filters/smoothers without much improvement.
- 5d structure of fine and coarse modes differs perhaps a direction for improvement